Search results for: ELECTROMAGNETIC (EM)-SIMULATION MODELS
-
Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging
PublicationDesign of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations,...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublicationAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublicationModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublicationUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublicationThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
Two-Stage Variable-Fidelity Modeling of Antennas with Domain Confinement
PublicationSurrogate modeling has become the method of choice in solving an increasing number of antenna design tasks, especially those involving expensive full-wave electromagnetic (EM) simulations. Notwithstanding, the curse of dimensionality considerably affects conventional metamodeling methods, and their capability to efficiently handle nonlinear antenna characteristics over broad ranges of the system parameters is limited. Performance-driven...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublicationDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublicationCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublicationFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublicationThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublicationThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
-
High-Efficacy Global Optimization of Antenna Structures by Means of Simplex-Based Predictors
PublicationDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the...
-
Fast Design Closure of Compact Microwave Components by Means of Feature-Based Metamodels
PublicationPrecise tuning of geometry parameters is an important consideration in the design of modern microwave passive components. It is mandatory due to limitations of theoretical design methods unable to quantify certain phenomena that are important for the operation and performance of the devices (e.g., strong cross-coupling effects in miniaturized layouts). Consequently, the initial designs obtained using analytical or equivalent network...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublicationDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Expedited Simulation-Driven Multi-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna
PublicationMajority of practical engineering design problems require simultaneous handling of several criteria. Although many of design tasks can be turned into single-objective problems using sufficient formulations, in some situations, acquiring comprehensive knowledge about possible trade-offs between conflicting objectives may be necessary. This calls for multi-objective optimization that aims at identifying a set of alternative, Pareto-optimal...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...
-
Rapid Design of 3D Reflectarray Antennas by Inverse Surrogate Modeling and Regularization
PublicationReflectarrays (RAs) exhibit important advantages over conventional antenna arrays, especially in terms of realizing pencil-beam patterns without the employment of the feeding networks. Unfortunately, microstrip RA implementations feature narrow bandwidths, and are severely affected by losses. A considerably improved performance can be achieved for RAs involving grounded dielectric layers, which are also easy to manufacture using...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublicationUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublicationThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublicationFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
PublicationDesign of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Global Miniaturization of Broadband Antennas by Prescreening and Machine Learning
PublicationThe development of contemporary electronic components, particularly antennas, places significant emphasis on miniaturization. This trend is driven by the emergence of technologies such as mobile communications, the internet of things, radio-frequency identification, and implantable devices. The need for small size is accompanied by heightened demands on electrical and field properties, posing a considerable challenge for antenna...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Knowledge-based performance-driven modeling of antenna structures
PublicationThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Fast Simulation-Driven Design of a Planar UWB Dipole Antenna with an Integrated Balun
PublicationThe paper presents a design of an ultra-wideband (UWB) antenna with an integrated balun. A fully planar balun interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure includes the dipole, the balun, and the microstrip input to account for interactions over the UWB band. The EM model is adjusted for low reflection...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Reduced-cost surrogate modelling of compact microwave components by two-level kriging interpolation
PublicationFull-wave electromagnetic (EM) analysis is a versatile tool for evaluating the performance of high-frequency components. Its potential drawback is its high computational cost, inhibiting the execution of EM-driven tasks requiring massive simulations. The applicability of equivalent network models is limited owing to the topological complexity of compact microstrip components because of EM cross-coupling effects. Development of...
-
Multi-Objective Design Optimization of Compact Quasi-Isotropic Dielectric Resonator Antenna
PublicationMulti-objective optimization of a quasi-isotropic dielectric resonator antenna (DRA) is presented. Utilization of variable-fidelity electromagnetic (EM) DRA models, response surface approximations, and response correction techniques, allows us to obtain—at a low computational cost—a set of alternative antenna designs representing the best possible trade-offs between three conflicting objectives: antenna size, its reflection response,...
-
A Mesh Deformation Technique Based on Solid Mechanics for Parametric Analysis of High-Frequency Devices With 3-D FEM
PublicationIn this paper, a versatile technique for mesh defor- mation is discussed, targeted at the electromagnetic (EM) field simulation of high-frequency devices using the 3-D finite element method (FEM). The approach proposed applies a linear elasticity model to compute the displacements of the internal mesh nodes in 3-D when the structure geometry is changed. The technique is compared with an alternative approach...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublicationThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...