Filters
total: 259
Search results for: surrogate modeling
-
Performance-Driven Inverse/Forward Modeling of Antennas in Variable-Thickness Domains
PublicationDesign of contemporary antenna systems is a challenging endeavor. The difficulties are partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities, but also constraints imposed upon the physical size of the radiators. Furthermore, conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise dictated by reliability,...
-
Simulation-Driven Antenna Modeling by Means of Response Features and Confined Domains of Reduced Dimensionality
PublicationIn recent years, the employment of full-wave electromagnetic (EM) simulation tools has become imperative in the antenna design mainly for reliability reasons. While the CPU cost of a single simulation is rarely an issue, the computational overhead associated with EM-driven tasks that require massive EM analyses may become a serious bottleneck. A widely used approach to lessen this cost is the employment of surrogate models, especially...
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublicationDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Cost-efficient multi-objective design optimization of antennas in highly-dimensional parameter spaces
PublicationMulti-objective optimization of antenna structures in highly-dimensional parameter spaces is investigated. For expedited design, variable-fidelity EM simulations and domain patching algorithm are utilized. The results obtained for a monopole antenna with 13 geometry parameters are compared with surrogate-assisted optimization involving response surface approximation modeling.
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Low-cost multi-criterial design optimization of compact microwave passives using constrained surrogates and dimensionality reduction
PublicationDesign of contemporary microwave circuits is a challenging task. Typically, it has to take into account several performance requirements and constraints. The design objectives are often conflicting and their simultaneous improvement may not be possible; instead, compromise solutions are to be sought. Representative examples are miniaturized microwave passives where reduction of the circuit size has a detrimental effect on its electrical...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublicationDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Performance‐driven modeling of compact couplers in restricted domains
PublicationFast surrogate models can play an important role in reducing the cost of EM-driven design closure of miniaturized microwave components. Unfortunately, construction of such models is challenging due to curse of dimensionality and wide range of geometry parameters that need to be included in order to make it practically useful. In this letter, a novel approach to design-oriented modeling of compact couplers is presented. Our method...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
On Computationally-Efficient Reference Design Acquisition for Reduced-Cost Constrained Modeling and Re-Design of Compact Microwave Passives
PublicationFull-wave electromagnetic (EM) analysis has been playing a major role in the design of microwave components for the last few decades. In particular, EM tools allow for accurate evaluation of electrical performance of miniaturized structures where strong cross-coupling effects cannot be adequately quantified using equivalent network models. However, EM-based design procedures (parametric optimization, statistical analysis) generate...
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublicationPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublicationPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublicationPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublicationQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
PublicationIn this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells
PublicationIn the paper, a framework for computationally-efficient design optimization of compact rat-race couplers (RRCs) is discussed. A class of hybrid RRCs with variable operating conditions is investigated, whose size reduction is obtained by replacing ordinary transmission lines with compact microstrip resonant cells (CMRCs). Our approach employs a bottom-up design strategy leading to the development of compact RRCs through rapid design...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublicationUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Improved Efficacy Behavioral Modeling of Microwave Circuits through Dimensionality Reduction and Fast Global Sensitivity Analysis
PublicationBehavioral models have garnered significant interest in the realm of high-frequency electronics. Their primary function is to substitute costly computational tools, notably electromagnetic (EM) analysis, for repetitive evaluations of the structure under consideration. These evaluations are often necessary for tasks like parameter tuning, statistical analysis, or multi-criterial design. However, constructing reliable surrogate models...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublicationReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Global EM-Driven Optimization of Multi-Band Antennas Using Knowledge-Based Inverse Response-Feature Surrogates
PublicationElectromagnetic simulation tools have been playing an increasing role in the design of contemporary antenna structures. The employment of electromagnetic analysis ensures reliability of evaluating antenna characteristics but also incurs considerable computational expenses whenever massive simulations are involved (e.g., parametric optimization, uncertainty quantification). This high cost is the most serious bottleneck of simulation-driven...
-
Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction
PublicationThe employment of full-wave electromagnetic (EM) analysis is a practical necessity in the design of contemporary antenna structures. This is because simpler models are generally not available or of limited accuracy. At the same time, EM-based design is computationally expensive. Consequently, the ways of accelerating tasks such as parametric optimization or uncertainty quantification have to be sought. A possible workaround that...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublicationDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...
-
Efficient Multi-Objective Simulation-Driven Antenna Design Using Co-Kriging
PublicationA methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto...
-
Reliable Multi-Stage Optimization of Antennas for Multiple Performance Figures in Highly-Dimensional Parameter Spaces
PublicationDesign of modern antenna structures needs to account for multiple performance figures and geometrical constraints. Fulfillment of these calls for the development of complex topologies described by a large number of parameters. EM-driven tuning of such designs is mandatory yet immensely challenging. In this letter, a new framework for multi-stage design optimization of multi-dimensional antennas with respect to several performance...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublicationDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublicationUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Design centering of compact microwave components using response features and trust regions
PublicationFabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material parameters or operating conditions, are detrimental to the performance of microwave circuits. Mitigating their impact requires accounting for possible parameter deviations already at the design stage. This involves optimization of appropriately defined statistical figures of merit such as yield. Alt-hough important, robust (or tolerance-aware)...
-
Size reduction of ultra-wideband antennas with efficiency and matching constraints
PublicationAntenna design is a multifaceted task that involves handling of various performance figures concerning both electrical performance of the structure as well as its geometry. Simultaneous control of several objectives through rigorous optimization is very challenging and virtually impossible through conventional approaches such as parameter sweeping. In this work, we investigate size reduction of ultra‐wideband antenna structures...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublicationUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublicationThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models
PublicationEver increasing performance requirements make the design of contemporary antenna systems a complex and multi-stage process. One of the challenges, pertinent to the emerging application areas but also some of the recent trends (miniaturization, demands for multi-functionality, etc.), is the necessity of handling several performance figures such as impedance matching, gain, or axial ratio, often over multiple frequency bands. The...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublicationSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to...