Search results for: MICROSTRIP ANTENNA ARRAYS
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublicationReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Exploring the Beam Squint Effects on Reflectarray Perfromance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell
PublicationIn this article, the phenomena of beam deviation in reflectarray is discussed. The radiation pattern of the unit cell, which plays a vital role in shaping the beam of the reflectarray, is analyzed by considering undesired specular and scattered reflections. These unwanted reflections adversely affect the pattern of the single unit cell, thereby reducing the overall performance of the reflectarray. To conduct our investigations,...
-
Rafał Lech dr hab. inż.
PeopleIEEE Senior Member #92122578 Rafal Lech was born in Elblag, Poland, in 1977. He received the M.Sc.E.E. and Ph.D. degrees (with honors) from the Gdansk University of Technology, Gdansk, Poland, in 2001 and 2007, respectively. He is currently with the Faculty of Electronics, Department of Microwave and Antenna Engineering, Telecommunications and Informatics, Gdansk University of Technology. His main research interests are electromagnetic-wave...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublicationDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Millimeter Wave Retrodirective Van Atta Arrays in LTCC Technology
PublicationThe millimeter wave Van Atta arrays, intended for chipless RFID applications and fabricated in LTCC technology, are presented in this paper. The arrays are designed for 24 GHz and 60 GHz bands. The method for an easy modification of the RCS characteristic by increasing the number of single-dimensional arrays, intended for increasing the RCS level, is also presented. The LTCC manufacturing process is described in detail. The fabricated...
-
Krzysztof Nyka dr hab. inż.
PeopleKrzysztof Nyka, received MSc (1986) PhD (2002) and DSc (2020) degrees in telecommunication and electrical engineering from the Faculty of Electronics, Telecommunications and Informatics (ETI) of Gdańsk University of Technology (GUT), Poland. He is currently an Associate Professor at the Department of Microwaves and Antenna Engineering, Faculty of ETI, GUT. Before his academic career, he worked for the electronic industry (1984-1986). Research...
-
Capon-like DoA estimator for rotating arrays
PublicationWe propose a nonparametric superresolution DoA estimator that is suitable for use with rotating arrays. The proposed method can be regarded as an extension of the Capon approach. We investigate its properties using computer simulations and present results obtained by processing of real world data.
-
Resonant Frequencies in Microstrip Structure with Omega Medium Substrate
PublicationThe paper presents the research on a rectangular microstrip structure with multilayer substrate containing dielectric and omega medium layers. The effect of pseudochiral medium layer location in the substrate and its thickness on the resonant frequency of the rectangular microstrip structure is investigated. The numerical analysis of investigated structures is based on expansion of electric and magnetic fields. Utilizing the continuity...
-
Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays
PublicationDoping of TiO2 nanotube arrays with boron was realized via electrochemical treatment of as-anodized titania immersed in electrolyte containing boric acid. The photoactivity of doped and pure titania was examined by means of photoelectrochemical and photocatalytic response under UV-vis irradiation. The results showed that photocurrent density of B-TNTs is remarkably higher (7.5 times) than density of pure TiO2 nanotube arrays. Furthermore,...
-
Resonance in Rectangular Microstrip Structure Loaded with a Pseudochiral Medium Layer
PublicationA rectangular microstrip structure with multilayer substrate containing dielectric and pseudochiral medium layers is studied in this paper. The effect of Omega medium layer location in the substrate and its thickness on the complex resonant frequency of the rectangular microstrip structure is investigated.
-
Slow-wave fractal-shaped compact microstrip resonant cell
PublicationA novel fractal-shaped compact microstrip resonant cell (CMRC) featuring a strong slow-wave effect has been presented. Its vital usefulness in the process of microstrip line miniaturisation has been proved and experimentally validated on the basis of a compact 3-dB branch-line coupler illustrating the possibilities of the approach. A prototype example structure has been designed to mirror the characteristics of a conventional device,...
-
Enhanced photoelectrochemical and photocatalytic performance of iodine-doped titania nanotube arrays
PublicationThe paper discusses the synthesis and performance of iodine doped titania nanotube arrays exhibited under irradiation. The doping procedure was performed as an additional, electrochemical process carried out after formation of nanotube arrays via anodization of Ti substrate. The optical and structural properties were characterized using Raman, UV-vis, photoluminescence and X-ray photoelectron spectroscopy. The surface morphology...
-
Novel microstrip low-pass filters with fractal defected ground structures
PublicationIn this study, three microstrip low-pass filters (LPFs) containing fractal-shaped defected ground structures have been designed and manufactured. To improve the performance of microstrip LPF, cascades of inductively coupled fractal resonators have been applied. Simultaneously, to achieve relatively constant microstrip impedance resulting in essentially low reflection losses, a modification of the strip geometry has been introduced....
-
Extraction of antenna pattern from near field antenna measurements distorted by undesired emission
PublicationIn this paper authors present experimental correction of antenna pattern obtained from near field measurements when they are distorted by determined electromagnetic emission. Such situation may be met e.g. when feeding or supply subsystem interacts with antenna radiation pattern due to self-emission. Presented results of experiments show effectiveness of extraction of antenna pattern utilizing near field antenna measurements.
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Measurements of electrically small antenna radiation patterns in non-anechoic environments using TGM
Open Research DataThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for four antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, super-ultrawideband antenna, and a quasi-Yagi component. The responses have been obtained at the selected frequencies of interest...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublicationIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublicationAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
Calculation of Resonance in Planar and Cylindrical Microstrip Structures Using a Hybrid Technique
PublicationA hybrid technique was employed for the analysis of the resonance frequency of thin planar and cylindrical microstrip structures with the patches of arbitrary geometry. The proposed technique utilizes a combination of Galerkin’s moment method and a finite-element method (FEM). In this approach, an FEM is adopted to calculate the patch surface current densities, and a method of moments is utilized to calculate the resonance frequencies...
-
Engineering Au nanoparticle arrays on SiO2 glass by pulsed UV laser irradiation
PublicationWe study semi-regular arrays of Au nanoparticles (NP) obtained via UV laser irradiation of thin Au films on glass substrate. The NP structures are prepared from films of a thickness up to 60 nm produced by discharge sputtering or pulsed laser deposition, and annealed by nanosecond laser pulses at 266 or 308 nm, respectively, at fluencies in the range of 60-410 mJ/cm2. For the rare- and close-packed NP structures, consistent description...
-
Antenna technique in space application - 22/23
e-Learning Courses -
On DoA estimation for rotating arrays using stochastic maximum likelihood approach
PublicationThe flexibility needed to construct DoA estimators that can be used with rotating arrays subject to rapid variations of the signal frequency is offered by the stochastic maximum likelihood approach. Using a combination of analytic methods and Monte Carlo simulations, we show that for low and moderate source correlations the stochastic maximum likelihood estimator that assumes noncorrelated sources has accuracy comparable to the...
-
Formation of the hollow nanopillar arrays through the laser-induced transformation of TiO2 nanotubes
PublicationIn the following article, we present a simple, two-step method of creating spaced, hollow nanopillars, from the titania nanotube arrays via pulsed laser-treatment. Due to the high ordering of the structure, the prepared material exhibits photonic properties, which has been shown to increase the overall photoefficiency. The optical and morphological changes in the titania nanotubes after pulsed laser-treatment with 532, 355, and...
-
Non-metaldoped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water
PublicationTitanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms:...
-
A Compact and Lightweight Microwave Tilt Sensor Based on an SRR-Loaded Microstrip Line
PublicationIn this paper, the symmetry property of split ring resonators (SRRs) is exploited to develop a tilt sensor. The sensor is composed of an SRR-loaded microstrip line operating at microwave frequencies. It is shown that the depth of notch in the reflection characteristic of the microstrip is a function of the tilt angle of the SRR. Thus, it can be used for sensing inclination. The sensor benefits from very compact size and light weight....
-
Simple Millimeter Wave Identification System Based on 60 GHz Van Atta Arrays
PublicationThe paper presents a proof-of-concept of a millimeter-wave identification system based on Van Atta array tags in the 60 GHz band. For interrogation of the tags, a vector network analyzer and a measurement transceiver were employed in alternative test configurations. The design, fabrication and measurements of co- and cross-polarized Van Atta arrays are presented in the paper. They can be treated as simple chipless RFID tags with...
-
RCS Enhancement of Millimeter Wave LTCC Van Atta Arrays With 3-D Printed Lenses for Chipless RFID Applications
PublicationIn this paper, we present a new method to enhance the radar- cross section (RCS) of Van Atta arrays which can be used in chipless radio-frequency identification tags operating in millimeter wave frequency bands. Small planar Low-Temperature Co-fired Ceramic (LTCC) Van Atta arrays, that are durable and can operate in harsh environments, are combined with 3-D printed lenses to increase or modify the shape of their RCS by up to 10...
-
On Radar DoA Estimation and Tilted Rotating Electronically Scanned Arrays
PublicationWe consider DoA estimation in a monopulse radar system employing a tilted rotating array. We investigate the case of nonzero steering angles, in which case the mapping between the target’s azimuth and elevation in the global coordinate system and their counterparts in the array local coordinate system becomes increasingly nonlinear and coupled. Since estimating the azimuth using coherently integrated signals might be difficult because...
-
Design of novel microstrip directional coupler for differential signal decoupling
PublicationThis study describes a concept of a novel microstrip directional coupler for differential signal decoupling, which can be used to digital signal overhearing on printed-circuit-boards. The complete design method is proposed with rules given analytically. Considered methodology is suitable for synthesis of couplers with low coupling factors, which have negligible influence on the transmission in main line. Theoretical considerations...
-
Resonance microstrip structure with patch of arbitrary convex geometry with the use of field matching technique
PublicationAn analysis of the resonance frequency problem of planar microstrip structure with patch of arbitrary convex geometry is presented. A full-wave analysis is employed utilizing a combination of Galerkin’s moment method and field matching technique. In this approach, a field matching technique is adopted to calculate the patch surface current densities, and next the method of moments is utilized to calculate resonance frequencies...
-
Resonance Frequency Calculation of Spherical Microstrip Structure Using Hybrid Technique
PublicationIn this paper the spherical microstrip structure is considered. The structure is composed of a metallic patch with an arbitrary shape placed on a dielectric coated metallic sphere. In the analysis the hybrid technique is utilized. In this approach the finite-difference technique is applied in a cavity model to determine the current basis functions on the patch. Next, using method of moments, the resonance frequency of the structure...
-
Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization
PublicationA conventional compact microstrip resonant cell (CMRC)has been thoroughly investigated to enhance its slow-wave properties and subsequently ensure an efficient miniaturization of a microstrip circuit. The geometry of a classic CMRC has been improved in terms of slowwave effect in two progressive steps: (i) a single-element topology has been replaced with a double-element one and (ii) a high-impedance section has been refined by...
-
Crack Detection in Metallic Surfaces Based on Dumbbell-Shaped Defected Ground Structures in Microstrip Technology
PublicationIn this paper, a novel crack detection sensor using a microstrip loaded with a Dumbbell-Shaped Defected Ground Structure (DS-DGS) is proposed. The sensing element is etched in the ground plane of a microstrip line and it is easy to fabricate. The electromagnetic (EM) field of the microstrip couples to the DS-DGS, thus demonstrating a bandstop behavior. It is shown that in the presence of a crack in a metallic surface underneath the...
-
Rapid surrogate-assisted statistical analysis of compact microstrip couplers
PublicationIn this paper, a technique for low-cost statistical analysis and yield estimation of compact microwave couplers has been presented. The analysis is executed at the level of a fast surrogate model representing selected characteristic points of the coupler response that are critical to determine satisfaction/violation of the prescribed design specifications. Because of less nonlinear dependence of the characteristic points on geometry...
-
Miniaturized and Lightweight ESPAR Antenna for WSN and IoT Applications
PublicationA new compact ESPAR antenna is investigated in this paper. The proposed antenna has 12 directional radiation patterns based on 12 passive elements and can be successfully used in Wireless Sensor Network applications. In proposed antenna design, the possibilities of 3D printing were used to implement a dielectric miniaturization overlay that allowed for reducing antenna occupied area by almost 60% and antenna profile by 27% in comparison...
-
Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network
PublicationThe design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....
-
Microstrip four-port circulator using a ferrite coupled line section
PublicationThis paper describes an alternative configuration of a four-port circulator realized in a microstrip ferrite coupled line technology. The proposed fully planar device employs two three-port circulators consisting of a ferrite coupled line junction and T junction. Both circulators are connected through the same arm, hence, the problem of anti-parallel magnetization met in this type of circulators is avoided without the increase...
-
Miniature reconfigurable antenna
PublicationThis work concerns the design of a miniature, low-profile reconfigurable antenna based on Huygens metamaterial sources for frequency f0 = 2.45 GHz. Two planar Huygens sources were designed consisting of near-field resonators. Sources are excited from a specially designed reconfigurable control system. Thanks to the two PIN diodes, the system can realize two cardioid radiation characteristics with...
-
Design optimization of novel compact circular polarization antenna
PublicationThe paper describes a structure and a design optimization procedure of a miniaturized circular polarization antenna with elliptical ground plane slots and feed line with stepped-impedance stubs. Constrained optimization of all antenna parameters is executed in order to explicitly reduce the antenna size while maintaining required impedance axial ratio bandwidth of 5 GHz to 7 GHz at the same time. The size of the optimized antenna...
-
Fabrication of Durable Ordered Ta2O5 Nanotube Arrays Decorated with Bi2S3 Quantum Dots
PublicationOne of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in...
-
A compact microstrip rat-race coupler constituted by nonuniform transmission lines
PublicationIn this work, a step-by-step development of a compact microstrip rat-race coupler (RRC) has been presented and discussed. A high degree of miniaturization has been obtained by substituting six quarter-wavelength uniform atomic building blocks of a RRC by their nonuniform counterparts. The miniaturization procedure has been realized in three progressive steps: (i) the first layout solution of a miniaturized RRC has been acquired...
-
Single-Anchor Indoor Localization Using ESPAR Antenna
PublicationIn this paper a new single-anchor indoor localization concept employing Electronically Steerable Parasitic Array Radiator (ESPAR) antenna has been proposed. The new concept uses a simple fingerprinting algorithm adopted to work with directional main beam and narrow minimum radiation patterns of ESPAR antenna that scans 360° area around the base station, while the signal strength received from a mobile terminal is being recorded...
-
Design-Oriented Constrained Modeling of Antenna Structures
PublicationFast surrogate models are crucially important to reduce the cost of design process of antenna structures. Due to curse of dimensionality, standard (data-driven) modeling methods exhibit serious limitations concerning the number of independent geometry parameters that can be handled but also (and even more importantly) their parameter ranges. In this work, a design-oriented modeling framework is proposed in which the surrogate is...
-
Novel structure and size-reduction-oriented design of microstrip compact rat-race coupler
PublicationIn this paper, a novel structure of a miniaturized microstrip rat-race coupler has been proposed. Surrogate-based optimization procedures are applied to explicitly reduce the coupler size while maintaining equal power split at the operating frequency of 1 GHz and sufficient bandwidth for return loss and isolation characteristics. The optimization is performed using the objective function with four penalty components. The footprint...
-
Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction
PublicationA comprehensive comparison of a wide collection of compact microstrip resonant cells (CMRCs) found in the extensive body of literature has been presented. The evaluation of different CMRC designs has led to the selection of the most promising CMRC geometry for the efficient miniaturisation of modern microwave components. In order to showcase the vital effectiveness of the approach, the initially selected CMRC has been notably...
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublicationIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
-
Novel structure and EM-driven design of miniaturized microstrip rat-race coupler
PublicationIn this paper, a novel structure and design procedure of a miniaturized microstrip rat-race coupler (RRC) is described. Small size of the RRC is achieved by folding the transmission lines of the conventional circuit into its interior, as well as by implementation of the structure on three layers. The final size of the coupler realized for the operating frequency of 1 GHz is only 220 mm2, which gives over 95% footprint reduction...
-
Diagnostics of thermal processes in antenna systems of broadcast stations
PublicationDiagnostics is an important element associated with the operation of a radio antenna systems, allowing earlier detection of potential damage. Thermography is one of the diagnostic tools, which allows for non-invasive assessment of technical condition. It brings together both financial savings associated with the removal of the damage and the potential effects caused by it. The article presents an example of using a thermal imaging...