Search results for: PHOTOCATALYSIS
-
Preparation and Characterization of Defective TiO2. The Effect of the Reaction Environment on Titanium Vacancies Formation
PublicationAmong various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and...
-
Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity
PublicationThe design of an active, stable and ecient photocatalyst that is able to be used for hydrogen production is of great interest nowadays. Therefore, four methods of AgTaO3 perovskite synthesis, such as hydrothermal, solvothermal, sol-gel and solid state reactions, were proposed in this study to identify the one with the highest hydrogen generation eciency by the water splitting reaction. The comprehensive results clearly show that...
-
The effect of Ag, Au, Pt, and Pd on the surface properties, photocatalytic activity and toxicity of multicomponent TiO2-based nanomaterials
PublicationMulticomponent TiO2-based nanomaterials (MC-NMs) show better physicochemical properties than their individual components or bulk materials. However, the same unique properties that offer innovative applications might also pose unknown risks to human health and the environment. In this context, TiO2- based nanomaterials with a mixture of noble metal precursors (Ag, Au, Pt, and Pd) for large-scale technological applications in air...
-
Synthesis of Titanium Dioxide via Surfactant-Assisted Microwave Method for Photocatalytic and Dye-Sensitized Solar Cells Applications
PublicationIn this study, titania nanoparticles were obtained using the microwave-assisted technique. Moreover, different surfactants (PEG (Mn = 400), Pluronic P123 and Triton X−100) were used during the synthesis in order to determine their impact on the crystallinity and morphology of the final products. Subsequently, techniques such as XRD, SEM and TEM (performed in high contrast and high-resolution mode), diffuse reflectance spectroscopy...
-
The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2
PublicationBimetallic nanoparticles, composed of two different metal elements, can exhibit peculiar electronic, optical, and catalytic or photocatalytic properties that are absent in the corresponding monometallic nanoparticles. We show the effect of calcination temperature (from 350 to 700°C) on the structure and the photocatalytic properties of Au/Pd-modified TiO2. The composition of the bimetallic Au/Pd nanoparticles in relation to their...
-
Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes
PublicationThe sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(II) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.
-
Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium
PublicationThe synthesis and characterisation of an asymmetric potential bridging ligand bmptpphz (bmptpphz = 2,17-bis(4-methoxyphenyl)tetrapyrido[3,2-a:2’,3’-c:3’’,2’’-h:2’’’,3’’’-j] phenazine) is presented. This ligand contains a 1,10-phenanthroline (phen) and a 2,9-disubstituted phen sphere and possesses a strong absorbance in the visible. Facile coordination of the phen sphere to a Ru(tbbpy)2 core leads to Ru(bmptpphz) ([(tbbpy)2Ru(bmptpphz)](PF6)2;...
-
Optimization of Hydrogen - Evolving Photochemical Molecular Devices
PublicationA molecular photocatalyst consisting of a RuII photocenter, a tetrapyridophenazine bridging ligand, and a PtX2 (X=Cl or I) moiety as the catalytic center functions as a stable system for light-driven hydrogen production. The catalytic activity of this photochemical molecular device (PMD) is significantly enhanced by exchanging the terminal chlorides at the Pt center for iodide ligands. Ultrafast transient absorption spectroscopy...
-
Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light
PublicationTo develop highly efficient molecular photocatalysts for visible light-driven hydrogen production, a thorough understanding of the photophysical and chemical processes in the photocatalyst is of vital importance. In this context, in situ X-ray absorption spectroscopic (XAS) investigations show that the nature of the catalytically active metal center in a (N^N)MCl2 (M=Pd or Pt) coordination sphere has a significant impact on the...
-
The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites
PublicationSeries ofWO3/TiO2 nanocompositeswere obtained by hydrothermal method followed by calcination in the temperature range from 400∘C to 900∘C. The characteristics of photocatalysts by X-ray diffractometry (XRD), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS) showed that increasing the calcination temperature from 400 to 900∘C resulted in change of photocatalytic activity under UV-Vis light.Moreover,...
-
TiO2 /SrTiO3 and SrTiO3 microspheres decorated with Rh, Ru or Pt nanoparticles: Highly UV–vis responsible photoactivity and mechanism
PublicationA series of TiO2/SrTiO3 and SrTiO3 microspheres decorated by Rh, Ru or Pt NPs were prepared by facile hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) with energy-dispersive Xray (EDX) spectroscopy, scanning electron microscopy (SEM), photoluminescence spectrometry (PL), Fourier transform infrared (FT-IR) and...
-
Tailoring Physicochemical Properties of V2O5 Nanostructures: Influence of Solvent Type in Sol-Gel Synthesis
PublicationThe influence of different solvents, including aqueous and nonaqueous types, on the physicochemical properties of V2O5 nanostructures was thoroughly investigated. Various characterization techniques, such as XRD, XPS, FTIR, Raman spectroscopy, UV-vis DRS, SEM, TEM, and BET, were employed to analyze the obtained materials. Additionally, the adsorption properties of the synthesized V2O5 nanostructures for methylene blue were examined,...
-
Efficient method for octahedral NH2-MIL-125 (Ti) synthesis: Fast and mild conditions
PublicationA new hot injection method for preparing octahedral NH2-MIL-125 (Ti) was developed. This method is six times faster and conducted under milder conditions, i.e., at 120°C in a flask, and exhibits higher crystal formation efficiency than the commonly used solvothermal method while maintaining comparable structural, optical, and photocatalytic properties.
-
Addressing challenges of BiVO4 light-harvesting ability through vanadium precursor engineering and sub-nanoclusters deposition for peroxymonosulfate-assisted photocatalytic pharmaceuticals removal
PublicationIn this study, we present a complex approach for increasing light utilisation and peroxymonosulfate (PMS) activation in BiVO4-based photocatalyst. This involves two key considerations: the design of the precursor for BiVO4 synthesis and interface engineering through CuOx sub-nanoclusters deposition. The designed precursor of ammonium methavanadate (NH4VO3, NHV) leads to reduction in particle size, better dispersion and improved light...
-
Effect of multi-walled carbon nanotubes properties on the photocatalytic activity of bismuth-based composites synthesised via an imidazolium ionic liquid
PublicationThe use of various types of multi-walled carbon nanotubes in the synthesis of bismuth oxybromide semiconductors via imidazolium ionic liquid was studied in detail. The effect of the MWCNT shape, specific surface area, and various diameters on the morphology, surface properties and photoactivity of the Bi-based composites has been investigated for the first time. So far, the literature has only shown the enhancement of photocatalytic...
-
Environmentally Friendly Fabrication of High-Efficient Fe-ZnO/Citric Acid-Modified Cellulose Composite and the Enhancement of Photocatalytic Activity in the Presence of H2O2
PublicationIn the present study, a novel Fe-ZnO/citric acid-modified cellulose composite (x%Fe-ZnOy% CAC) was synthesized using an environmentally friendly hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV−vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), nitrogen physisorption, and electrochemical and photocurrent density...
-
Magnetically recyclable TiO2/MXene/MnFe2O4 photocatalyst for enhanced peroxymonosulphate-assisted photocatalytic degradation of carbamazepine and ibuprofen under simulated solar light
PublicationIn this study, a novel TiO2/Ti3C2/MnFe2O4 magnetic photocatalyst with dual properties, enabling (i) improved photocatalytic degradation with PMS activation under simulated solar light and (ii) magnetic separation after the degradation process in an external magnetic field was developed and applied for the efficient photodegradation pharmaceutically active compounds (PhACs) frequently present in wastewater and surface waters worldwide. MXene...
-
New LED photoreactor with modulated UV–vis light source for efficient degradation of toluene over WO3/TiO2 photocatalyst
PublicationThe efficiencies of prepared WO3/TiO2 photocatalysts with varying amounts of WO3 were evaluated for gas-phase photocatalytic degradation of toluene. The obtained results revealed that the best photocatalytic properties were characteristic for samples calcined at 500ºC, which can be associated with high crystalline phase content (> 97%) and favourable BET surface area. The photocatalytic degradation tests were performed in two photoreactors...
-
The effect of PEDOT morphology on hexavalent chromium reduction over 2D TiO2/PEDOT photocatalyst under UV–vis light
PublicationThe present study represents an approach to apply organic-inorganic hybrid materials for photocatalytic removal of heavy metals from the aqueous environment. The photocatalytic activity of the semiconductor modified with the conjugated polymer may depends on the conjugated polymer type, its amount and morphology. Therefore, in the present study the effect of poly (3, 4-ethylenedioxythiophene) (PEDOT) morphology on adsorption and photoreduction...
-
Diiodo-BODIPY Sensitizing of the [Mo3S13]2– Cluster for Noble-Metal-Free Visible-Light-Driven Hydrogen Evolution within a Polyampholytic Matrix
PublicationWe report on a photocatalytic setup that utilizes the organic photosensitizer (PS) diiodo-BODIPY and the non-precious-metal-based hydrogen evolution reaction (HER) catalyst (NH4)2[Mo3S13] together with a polyampholytic unimolecular matrix poly(dehydroalanine)-graft-poly(ethyleneglycol) (PDha-g-PEG) in aqueous media. The system shows exceptionally high performance with turnover numbers (TON > 7300) and turnover frequencies (TOF...
-
Design and synthesis of TiO2/Ti3C2 composites for highly efficient photocatalytic removal of acetaminophen: The relationships between synthesis parameters, physicochemical properties, and photocatalytic activity
PublicationIn this study, we report the potential of TiO2/Ti3C2 composite fabricated by oxidation of MXene for degradation of persistent organic pollutants. The effect of the synthesis conditions (time, temperature, and reaction environment) on the morphology, physicochemical properties, and photocatalytic activity was investigated. It was found that acetaminophen degradation was positively correlated with TiO2 content in the composite structure. Furthermore,...
-
Temperature-controlled nanomosaics of AuCu bimetallic structure towards smart light management
PublicationGold–copper nanostructures are promising in solar-driven processes because of their optical, photocatalytic and photoelectrochemical properties, especially those which result from the synergy between the two metals. Increasing interest in their internal structure, such as the composition or distribution of the Au and Cu as well as the size and shape of the nanoparticles, have developed to define their physicochemical properties. In...
-
Surface and Trapping Energies as Predictors for the Photocatalytic Degradation of Aromatic Organic Pollutants
PublicationIn this study, anatase samples enclosed by the majority of three different crystal facets {0 0 1}, {1 0 0}, and {1 0 1} were successfully synthesized. These materials were further studied toward photocatalytic degradation of phenol and toluene as model organic pollutants in water and gas phases. The obtained results were analyzed concerning their surface structure, reaction type, and surface development. Moreover, the regression...
-
Development of novel (BiO)2OHCl/BiOBr enriched with boron doped-carbon nanowalls for photocatalytic cytostatic drug degradation: Assessing photocatalytic process utilization in environmental condition
PublicationIn this work, a series of novel (BiO)2OHCl/BiOBr-x%B:DGNW (x = 0%, 1%, 1.5%, 2%) composites with different content of boron-doped diamond/graphene nanowalls (B:DGNW) were fabricated by simple solvothermal synthesis. A boron-doped diamond/graphene nanowalls (B:DGNW) were prepared by CVD method. A series of analyses: XRD, XPS, SEM, and TEM showed that the photocatalyst (BiO)2OHCl/BiOBr-x%B:DGNW with a “flower-like” morphology was...
-
Novel composite of Zn/Ti-layered double hydroxide coupled with MXene for the efficient photocatalytic degradation of pharmaceuticals
PublicationIn the present study, a hybrid photocatalyst of Zn/Ti layered double hydroxide (LDH) coupled with MXene – Ti3C2 was synthesized for the first time and applied in photocatalytic degradation of acetaminophen and ibuprofen, two commonly present in the natural environment and prone to accumulate in the aquatic ecosystem pharmaceuticals. The effect of MXene content (0.5 wt%, 2.5 wt%, and 5 wt%) on the photocatalytic activity of LDH/MXene...
-
Tuning the photocatalytic performance through magnetization in Co-Zn ferrite nanoparticles
PublicationIn this work, the link between the photocatalytic performance of Co-Zn ferrite nanoparticles and the net magnetic moment is analyzed. CoxZn1-xFe2O4 nanoparticles (0 ≤ x ≤ 1) were synthesized by co-precipitation method and different physicochemical techniques were employed to characterize the samples (X-ray diffraction, Transmission Electron Microscopy (TEM), BET surface area, Diffuse Reflectance Spectroscopy (DRS), Photoluminescence spectroscopy,...
-
Modelling and optimisation of MXene-derived TiO2/Ti3C2 synthesis parameters using Response Surface Methodology based on the Box–Behnken factorial design. Enhanced carbamazepine degradation by the Cu-modified TiO2/Ti3C2 photocatalyst
PublicationIn the present study, a hydrothermal method in a water/ethanol environment was used for the first time to obtain novel Cu/TiO2/Ti3C2 composites with high photocatalytic activity for the degradation of carbamazepine (CBZ) under simulated solar light. The Box–Behnken factorial design was coupled with Response Surface Methodology (RSM) for synthesis parameter optimisation. The effect of different synthesis parameters, including temperature, time...
-
Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging pollutants degradation
PublicationRecently, carbon-related materials have been proposed to improve the charge separation of the photogenerated carriers in the semiconductor matrices’ and surface properties. Carbon-related materials may act as co-catalysts, enhancing the pollutants adsorption on the surface, improving the charge carriers separation and photocatalyst stability and providing more active centres for photocatalytic reactions. This review summarizes...
-
Preparation and photocatalytic properties of BaZrO 3 and SrZrO 3 modified with Cu 2 O/Bi 2 O 3 quantum dots
PublicationIn this study, we report a novel method of BaZrO3 and SrZrO3 surface modification by two different types of quantum dots (QDs, Cu2O and Bi2O3), which improved the photocatalytic performance of the obtained materials under UV-Vis light irradiation. Pristine BaZrO3 and SrZrO3 were prepared by the hydrothermal method. The deposition of Cu2O- and Bi2O3-QDs was carried out by chemical reduction. The morphology of the nanoparticles was...
-
Theoretical Investigation of the Electron-Transfer Dynamics and Photodegradation Pathways in a Hydrogen-Evolving Ruthenium-Palladium Photocatalyst
PublicationTime-dependent density functional theory calcula- tions combinedwith the Marcus theory of electron transfer (ET) were app lied on the molecular photocatalys t [(tbbpy) 2 Ru(tpph z)PdC l 2 ] 2 + in order to elucidate thelight-in- duced relaxation pathways populated upon excitation in the longer wavelength range of its absorption spectrum. The computational resultsshow that after the initial excitation, metal (Ru) to ligand (tpphz)chargetransfer...
-
Morphology, surface properties and photocatalytic activity of the bismuth oxyhalides semiconductors prepared by ionic liquid assisted solvothermal method
PublicationThis is the first report of the effect of the ILs cation type (imidazolium, pyridinium and pyrrolidinium) on the morphology, surface properties and photoactivity of BiOX semiconductors type obtained by solvothermal method in glycerol. The various ionic liquids (IL) cation type as a halogen source and templating agent for the synthesis of the bismuth oxyhalides nanoparticles has been systematically investigated. The role of ILs...
-
Photocatalytically Active TiO2/Ag2O Nanotube Arrays Interlaced with Silver Nanoparticles Obtained from the One-Step Anodic Oxidation of Ti–Ag Alloys
PublicationThe development of a photocatalyst with remarkable activity to degrade pollutants in aqueous and gas phase requires visible lightresponsive stable materials, easily organized in the form of a thin layer (to exclude the highly expensive separation step). In this work, we present a one-step strategy for synthesizing material in the form of a self-organized TiO2/Ag2O nanotube (NT) array interlaced with silver nanoparticles (as in a...
-
Effect of irradiation intensity and initial pollutant concentration on gas phase photocatalytic activity of TiO2 nanotube arrays
PublicationWell-organized TiO2 nanotube arrays were fabricated via one-step anodization process. The as-prepared TiO2 nanotubes were characterized by X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM). Photocatalytic activity of obtained photocatalyst was studied in reaction of toluene degradation in the gas phase using low powered and low...
-
Synthesis of highly crystalline photocatalysts based on TiO2 and ZnO for the degradation of organic impurities under visible-light irradiation
PublicationA TiO2–ZnO binary oxide system (with molar ratio TiO2:ZnO = 8:2) was synthesized by a hydrothermal method, assisted by calcination at temperatures of 500, 600 and 700 °C, using zinc citrate as the precursor of ZnO. The morphology (SEM, TEM), crystalline structure (XRD, Raman spectroscopy), diffuse reflectance spectra (DRS), chemical surface composition (EDXRF), porous structure parameters (low-temperature N2 sorption) and characteristic...
-
Magnetic photocatalysts for water treatment
PublicationThe concept of magnetic photocatalysts with separation function requires ferromagnetic material with high magnetic susceptibility to an external magnetic field to enable recycling of composite nanoparticles. Currently, much attention is devoted to functionalization of photocatalyst using MFe2O3, where M =Fe, Zn, Co, Mn. However direct contact between photocatalyst and magnetic iron oxide particles leads to photodissolution of iron...
-
Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory.
PublicationTime dependent density functional theory calculations are applied on a series of molecular photocatalysts of the type [(tbbpy)2M1(tpphz)M2X2]2+ (M1 = Ru, Os; M2 = Pd, Pt; X = Cl, I) in order to provide information concerning the photochemistry occurring upon excitation of the compounds in the visible region. To this aim, the energies, oscillator strengths and orbital characters of the singlet and triplet excited states are investigated....
-
TiO 2 Co x O y composite nanotube arrays via one step electrochemical anodization for visible light–induced photocatalytic reaction
PublicationTiO2CoxOy (x = 1, y = 1 or x = 3, y = 4) composite photocatalysts have been synthesized via one step anodic anodization of TiCo alloys. The effects of the cobalt content in the alloy (5, 10 and 15 wt%), water content (2, 5 and 10%) in the electrolyte solution, and applied voltage (30, 40 and 50 V) during the anodization process on the morphology and surface properties. Additionally, the dependence of cobalt content in the nanotubes...
-
The potential of imogolite nanotubes as (co-)photocatalysts: a linear-scaling density functional theory study
PublicationWe report a linear-scaling density functional theory (DFT) study of the structure, wall-polarization absolute band-alignment and optical absorption of several, recently synthesized, open-ended imogolite (Imo) nanotubes (NTs), namely single-walled (SW) aluminosilicate (AlSi), SW aluminogermanate (AlGe), SW methylated aluminosilicate (AlSi-Me), and double-walled (DW) AlGe NTs. Simulations with three different semi-local and dispersion-corrected...
-
Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots
PublicationA heterojunction with excellent visible light response and stability based on titanium dioxide nanotubes (TiO2 NTs), bismuth sulfide quantum dots (Bi2S3 QDs), and platinum nanoparticles (Pt NPs) is proposed. Both Pt NPs (3.0 ± 0.2 nm) and Bi2S3 QDs (3.50 ± 0.20 nm) are well distributed on the (i) top parts, (ii) inner walls, and (iii) outer walls of the TiO2 NTs. Visible-light-induced photoreaction was initialized by excitation...
-
Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles
PublicationNoble metal nanoparticles (NMNPs) enhanced TiO2 response and extended its activity under visible light. Photocatalytic activity of TiO2 modified with noble metal nanoparticles strongly depends on the physicochemical properties of NMNPs. Among others, the differences in the size of NMNPs seems to be one of the most important factors. In this view, the effect of the metal’s nanoparticles size, type and amount on TiO2 photocatalytic...
-
Photocatalytic activity of solvothermal prepared BiOClBr with imidazolium ionic liquids as a halogen sources in cytostatic drugs removal
PublicationIn this work, the BiOClBr, as a new family of bismuth based semiconductors, was successfully applied to remove of cytostatic drugs from water under UV-Vis light irradiation. BiOCl, BiOBr and BiOClBr were synthesized using two steps solvothermal method in glycerol. The inorganic salts (KCl and KBr) and 1-butyl-3-metylimidazolium chloride (BmimCl) and 1-butyl-3-metylimidazolium bromide (BmimBr) ionic liquids (ILs) were used as the...
-
The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the surface of SrTiO3 and photoactivity of Pt–SrTiO3 composite in the H2 generation reaction
PublicationPhotocatalytic water splitting has great potential in solar-hydrogen production as a low-cost and environmentally friendly method. Different unique techniques used to obtain photocatalysts with various modifications to improve H2 generation have been introduced. In the present work, SrTiO3 was successfully synthesized via the solvothermal method in the presence of ionic liquid (IL) - 1-butyl-3-methylimidazolium bromide ([BMIM][Br])...
-
Ordered TiO2 nanotubes with improved photoactivity through self-organizing anodization with the addition of an ionic liquid: effects of the preparation conditions
PublicationModifying the geometric and surface parameters of oriented TiO2 nanotubes (NTs) is beneficial to the utilization of solar energy for chemical reactions, and this performance may be further improved. Thus, the effects of adding an ionic liquid (IL), 1-butylpiridinium chloride [BPy][Cl], and the effects of the water content and preparation conditions on the surface morphological, physicochemical, photocatalytic and photoelectrochemical...
-
NOx Photooxidation over Different Noble Metals Modified TiO2
PublicationWe compared the activity enhancement effect of noble metal deposited on TiO2 in photocatalytic nitrogen oxides oxidation. Titanium dioxide was decorated with Ag, Au, Pt or Pd in the sol-gel process. Synthesized catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurement (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX)....
-
Resistive gas sensors – Perspectives on selectivity and sensitivity improvement
PublicationResistive gas sensors are very popular and relatively inexpensive; they can operate at elevated or room temperature for years on end. The main disadvantage of resistive gas sensors is their limited selectivity and sensitivity, but various methods have been applied to improve their behavior. The composition of the porous gas sensing layer, or changes in the sensor’s operating temperature, can enhance the gas detection ability. Furthermore, emerging...
-
Seyed Soroush Mousavi Khadem
People -
Eryka Mrotek mgr inż.
People -
Jakub Smoliński mgr inż.
People -
Amir Mohammad Sheikh Asadi
People -
Damian Makowski mgr
People