displaying 1000 best results Help
Search results for: DELAY-DIFFERENTIAL EQUATIONS
-
Numerical Methods for Partial Differential Equations
e-Learning CoursesCourse description: This course focuses on modern numerical techniques for linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations (PDEs), and integral equations fundamental to a large variety of applications in science and engineering. Topics include: formulations of problems in terms of initial and boundary value problems; finite difference and finite element discretizations; boundary element approach;...
-
Infinite systems of hyperbolic functional differential equations. Ukr.Mat. Zurn.*2003 t. 55 nr 12 s. 1678-1696 bibliogr. 21 poz. Nieskończone układy hiperboliczne równań różniczkowo-funkcyjnych.
PublicationWykazano istnienie prawie klasycznego rozwiązania zagadnienia Cauchy´ego.Dowód wykorzystuje metodę bicharakterystyk i nierówności całkowo-funkcyjne.
-
International Journal of Qualitative Theory of Differential Equations and Applications
Journals -
A Criterion for Conditional Instability by the First Approximation for Solutions of Differential Systems
Publication -
Structural Stability of Nonautonomous Systems
Publication -
Chaos in vibroimpact systems with one degree of freedom in a neighborhood of chatter generation: II
Publication -
Chaos in vibroimpact systems with one degree of freedom in a neighborhood of chatter generation: I
Publication -
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems
PublicationWe study the existence of homoclinic type solutions for a class of inhomogenous Lagrangian systems with a potential satisfying the Ambrosetti-Rabinowitz superquadratic growth condition and a square integrable forcing term. A homoclinic type solution is obtained as a limit of periodic solutions of an approximative sequence of second order differential equations.
-
Straightened characteristics of McKendrick-von Foerster equation
PublicationWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
The cohomological span of LS-Conley index
PublicationIn this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form Lx+K(x), where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula...
-
Fixed point indices of iterated smooth maps in arbitrary dimension
PublicationWe give a complete description of possible sequences ofindices of iterations of f at an isolated fixed point, answering inaffirmative the Chow, Mallet-Paret and Yorke conjecture posed in[S.N. Chow, J. Mallet-Parret, J.A. Yorke, A periodic point index whichis a bifurcation invariant, in: Geometric Dynamics, Rio de Janeiro,1981, in: Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983,pp. 109-131].
-
The saga of a fish: from a survival guide to closing lemmas
PublicationIn the paper by D. Burago, S. Ivanov and A. Novikov, “A survival guide for feeble fish”, it has been shown that a fish with limited velocity can reach any point in the (possibly unbounded) ocean provided that the fluid velocity field is incompressible, bounded and has vanishing mean drift. This result extends some known global controllability theorems though being substantially nonconstructive. We give a fish a different recipe...
-
Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces
PublicationIn this paper we introduce a new compactness condition — Property-(C) — for flows in (not necessary locally compact) metric spaces. For such flows a Conley type theory can be developed. For example (regular) index pairs always exist for Property-(C) flows and a Conley index can be defined. An important class of flows satisfying the this compactness condition are LS-flows. We apply E-cohomology to index pairs of LS-flows and obtain...
-
Integrate-and-fire models with an almost periodic input function
PublicationWe investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic...
-
Homoclinic solutions for a class of the second order Hamiltonian systems
PublicationW niniejszej pracy badamy istnienie orbit homoklinicznych dlaukładu Hamiltonowskiego drugiego rzędu: q^{..} + V_{q}(t,q) = f(t), gdzie V z iloczynu kartezjańskiego R x R^{n} do R jest postaciV(t,q) = -K(t,q) + W(t,q). Zakładamy, ze V jest T-okresowe ze względuna zmienną t, K spełnia tzw. ''pinching'' warunek, W jest superliniowew nieskończoności, a norma f w L^{2} jest wystarczająco mała.Orbitę homokliniczną takiego układu znajdujemy...
-
Heteroclinic solutions for a class of the second order Hamiltonian systems
PublicationW pracy dowodzi się istnienia rozwiązań heteroklicznicznych dla pewnej klasy równań różniczkowych zwyczajnych drugiego rzędu typu hamiltonowskiego.
-
Different types of solvability conditions for differential operators
PublicationSolvability conditions for linear differential equations are usually formulated in terms of orthogonality of the right-hand side to solutions of the homogeneous adjoint equation. However, if the corresponding operator does not satisfy the Fredholm property such solvability conditions may be not applicable. For this case, we obtain another type of solvability conditions, for ordinary differential equations on the real axis, and...
-
Local fixed point indices of iterations of planar maps
PublicationW artykule podana zostaje postać indeksów iteracji dla pewnej klasy odwzorowań planarnych. Podstawowymi narzędziami stosowanym w pracy są liczba Nielsena i indeks Conleya.
-
A Strategy to Locate Fixed Points and Global Perturbations of ODE’s: Mixing Topology with Metric Conditions
PublicationIn this paper we discuss a topological treatment for the planar system z' = f (t, z) + g(t, z) where f and g are T -periodic in time and g(t, z) is bounded. Namely, we study the effect of g(t, z) in two different frameworks: isochronous centers and time periodic systems having subharmonics. The main tool employed in the proofs consists of a topological strategy to locate fixed points in the class of orientation preserving embedding...
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublicationWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
-
Description of the solution set of the von Karman equations for a circular plate in a small neighbourhood of a simple bifurcation point
PublicationW niniejszej pracy badamy równania von Karmana dla cienkiej, sprężystej, kołowej płyty na sprężystym podłożu, poddawanej działaniu sił ściskających wzdłuż brzegu. Są to równania różniczkowe cząstkowe IV rzędu. Stosując metody analizy nieliniowej, opisujemy zbiór rozwiązań równań von Karmana w małym otoczeniu jednokrotnego punktu bifurkacji.Badania były finansowane przez grant nr 1 P03A 042 29.
-
A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional
PublicationIn this paper we show how to construct Morse homology for an explicit class of functionals involving the 2p-area functional. The natural domain of definition of such functionals is the Banach space W_0^{1,2p}(\Omega), where p > n/2 and \Omega \subet R^n is a bounded domain with sufficiently smooth boundary. As W_0^{1,2p}(\Omega) is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate...
-
On the Fenchel–Moreau conjugate of G-function and the second derivative of the modular in anisotropic Orlicz spaces
PublicationIn this paper, we investigate the properties of the Fenchel–Moreau conjugate of G-function with respect to the coupling function c(x, A) = |A[x]2 |. We provide conditions that guarantee that the conjugate is also a G-function. We also show that if a G-function G is twice differentiable and its second derivative belongs to the Orlicz space generated by the Fenchel–Moreau conjugate of G then the modular generated by G is twice differentiable...
-
Homoclinics for singular strong force Lagrangian systems in R^N
PublicationWe will be concerned with the existence of homoclinics for second order Hamiltonian systems in R^N (N>2) given by Hamiltonians of the form H(t,q,p)=Φ(p)+V(t,q), where Φ is a G-function in the sense of Trudinger, V is C^2-smooth, periodic in the time variable, has a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin. Under a strong force type condition aroud the singular point ξ, we prove...
-
The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications
PublicationWe show that the Hamiltonian action satisfies the Palais-Smale condition over a “mixed regular- ity” space of loops in cotangent bundles, namely the space of loops with regularity H^s, s ∈ (1/2, 1), in the baseand H^{1−s} in the fiber direction. As an application, we give a simplified proof of a theorem of Hofer-Viterbo on the existence of closed characteristic leaves for certain contact type hypersufaces in cotangent bundles.
-
Existence and uniqueness for neutral equations with state dependent delays
PublicationW pracy w celu wykazania istnienia i jednoznaczności rozwiązania równania została zaprezentowana metoda porównawcza.
-
Parameter and delay estimation of linear continuous-time systems
PublicationIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous identification...
-
Parameter and delay estimation of linear continuous-time systems
PublicationIn this paper the problem of on-line identification of non-stationary delay systems is considered. Dynamics of supervised industrial processes is usually described by ordinary differential equations. Discrete-time mechanization of their continuous-time representations is based on dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures implemented in recursive forms are applied for simultaneous...
-
On–line Parameter and Delay Estimation of Continuous–Time Dynamic Systems
PublicationThe problem of on-line identification of non-stationary delay systems is considered. The dynamics of supervised industrial processes are usually modeled by ordinary differential equations. Discrete-time mechanizations of continuous-time process models are implemented with the use of dedicated finite-horizon integrating filters. Least-squares and instrumental variable procedures mechanized in recursive forms are applied for simultaneous...
-
Numerical solution of threshold problems in epidemics and population dynamics
PublicationA new algorithm is proposed for the numerical solution of threshold problems in epidemics and population dynamics. These problems are modeled by the delay-differential equations, where the delay function is unknown and has to be determined from the threshold conditions. The new algorithm is based on embedded pair of continuous Runge–Kutta method of order p = 4 and discrete Runge–Kutta method of order q = 3 which is used for the...
-
Hopf bifurcation in time‐delayed gene expression model with dimers
PublicationWe study a mathematical model of gene transcription and protein synthesis with negative feedback. We consider a system of equations taking into account the formation of dimers (i.e., complex formed by two protein monomers), the way in which dimers bind to DNA and time delay in translation process. For the model consisting of three ordinary differential equations with time delay, we derive conditions for stability of the positive...
-
Analysis of a gene expression model
PublicationWe study a mathematical model of gene transcription and protein synthesis with negative feedback. We consider a system of equations taking into account the number of active binding sites, the way in which dimers bind to DNA and time delay in translation process. For a simplified model that consist of three ordinary differential equations with time delay we derive conditions for stability of the positive steady state and for the...
-
Dynamics of a simplified HPT model in relation to 24h TSH profiles
PublicationWe propose a simplified mathematical model of the hypothalamus-pituitary-thyroid (HPT) axis in an endocrine system. The considered model is a modification of the model proposed by Mukhopadhyay and Bhattacharyya in [10]. Our system of delay differential equations reconstructs the HPT axis in relation to 24h profiles of human in physiological conditions. Homeostatic control of the thyroid-pituitary axis is considered by using...
-
Justyna Signerska-Rynkowska dr inż.
PeopleI am currently an assistant professor (adjunct) at Gdansk University of Technology (Department of Differential Equations and Mathematics Applications). My scientific interests include dynamical systems theory, chaos theory and their applications to modeling of biological phenomena, especially to neurosciences. In June 2013 I completed PhD in Mathematics at the Institute of Mathematics of Polish Academy of Sciences (IMPAN) (thesis...
-
Grzegorz Graff prof. dr hab.
People -
Joanna Janczewska prof. dr hab.
PeopleJoanna Janczewska obtained her PhD degree at the University of Gdansk in 2002. From October 1999 to September 2004 she was an assistant at the University of Gdansk. Since October 2004 she has been an assistant professor at the Gdansk University of Technology. Moreover, from October 2008 to September 2010 she had a visiting position in the Institute of Mathematics of the Polish Academy of Sciences. Her mathematical interests...
-
Equations with Separated Variables on Time Scales
PublicationWe show that the well-known theory for classical ordinary differential equations with separated variables is not valid in case of equations on time scales. Namely, the uniqueness of solutions does not depend on the convergence of appropriate integrals.
-
Parabolic Equations with Functional Dependence
PublicationWe consider the Cauchy problem for nonlinear parabolic equations with functional dependence and prove theorems on the existence of solutions to parabolic differential-functional equations.
-
An facile Fortran-95 algorithm to simulate complex instabilities in three-dimensional hyperbolic systems
Open Research DataIt is well know that the simulation of fractional systems is a difficult task from all points of view. In particular, the computer implementation of numerical algorithms to simulate fractional systems of partial differential equations in three dimensions is a hard task which has no been solved satisfactorily. Here, we provide a Fortran-95 code to solve...
-
Time Delay Estimation in Two-Phase Flow Investigation Using the γ-Ray Attenuation Technique.
PublicationTime delay estimation is an important research question having many applications in a range of technologies. Measurement of a two-phase flow in a pipeline or an open channel using radioisotopes is an example of such application. For instance, the determination of velocity of dispersed phase in that case is based on estimation of the time delay between two stochastic signals provided by scintillation probes. The proper analysis...
-
PROPERTIES OF ONE DIMENSIONAL OPEN-CHANNEL STEADY FLOW EQUATIONS
PublicationIn this paper properties of discrete forms of one dimensional steady gradually varied flow equations are discussed. Such forms of flow equations are obtained as a result of approximation of their differential forms, which is required to solve them numerically. For such purpose explicit or implicit numerical approximation schemes for ordinary differential equations can be applied. It turns out that dependently on the chosen approximation...
-
Service time distribution influence on end-to-end call setup delay calculation in networks with Session Initiation Protocol
PublicationThe most important GoS parameter for networks with SIP protocol is end-to-end call setup delay. So far there were no coherent models allowing calculation of these parameters for networks with SIP protocol. Few models were developed but they are insufficient. In the paper we propose model which allows end-to-end call setup delay calculation for networks with SIP protocol. The model is using chain of M/G/1/K models and is applicable...
-
Action-reaction based synthesis of acoustic wavefield equations
PublicationThe analysis of acoustic fields is usually based on the well-known mathematics of second order partial differential equations called wave equations. The author explores the duality and symmetry of linear fluid mechanics and develops two distinct equations of acoustics on the basis of a causal approach to local small-scale phenomena. Wavefields that are solutions of these equations have different composition, the spherical pressure...
-
Karolina Lademann mgr
PeopleCurriculum vitae
-
Inverse Flood Routing Using Simplified Flow Equations
PublicationThe paper considers the problem of inverse flood routing in reservoir operation strategy. The aim of the work is to investigate the possibility of determining the hydrograph at the upstream end based on the hydrograph required at the downstream end using simplified open channel flow models. To accomplish this, the linear kinematic wave equation, the diffusive wave equation and the linear Muskingum equation are considered. To achieve...
-
Katarzyna Tessmer mgr inż.
PeopleEducation 2012: B.Sc. in Financial Mathematics from the Faculty of Applied Physics and Mathematics, Gdansk University of Technology (2008 – 2012: Bachelor of Science Engineering Studies. Field of study: Mathematics. Specialization: Financial Mathematics.) 2014: M.Sc. in Financial Mathematics from the Faculty of Applied Physics and Mathematics, Gdansk University of Technology (2012 – 2014: Master of Science Engineering Studies....
-
Fractional-order Systems and Synchronous Generator Voltage Regulator
PublicationModern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using...
-
Existence of unbounded solutions to parabolic equations with functional dependence
PublicationThe Cauchy problem for nonlinear parabolic differential-functional equations is considered. Under natural generalized Lipschitz-type conditions with weights, the existence and uniqueness of unbounded solutions is obtained in three main cases: (i) the functional dependence u(·); (ii) the functional dependence u(·) and ∂xu(·); (iii) the functional dependence u(·)and the pointwise dependence ∂xu(t,x).
-
Method of lines for physiologically structured models with diffusion
PublicationWe deal with a size-structured model with diffusion. Partial differential equations are approximated by a large system of ordinary differential equations. Due to a maximum principle for this approximation method its solutions preserve positivity and boundedness. We formulate theorems on stability of the method of lines and provide suitable numerical experiments.
-
On solvability of initial boundary-value problems of micropolar elastic shells with rigid inclusions
PublicationThe problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated...