Search results for: antenna array, dual-polarization, microstrip antenna, 5g, mu-mimo, superposition
-
Size-Reduction-Oriented Design of Compact CPW-Fed UWB Monopole Antenna
PublicationA structure and design optimization of compact CPW-fed UWB monopole antenna is presented. Explicit size reduction through constrained numerical optimization of all relevant geometry parameters of the structure leads to a very small footprint of only 321 mm2. At the same time, a very wide antenna bandwidth is achieved from 3.1 GHz to 17 GHz.
-
International Journal on Communications Antenna and Propagation (IRECAP)
Journals -
A structure and design of a novel compact UWB MIMO antenna
PublicationIn the paper, a concept and design procedure of a novel compact MIMO slot antenna is presented. In order to achieve a better filling of available space, individual antennas are constrained to a triangular shape and optimized for a reduced size. The MIMO structure is then assembled using the two of previously designed antennas in orthogonal arrangement. Surrogate-assisted numerical optimization involving variable-fidelity electromagnetic...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Fast Antenna Optimization Using Gradient Monitoring and Variable-Fidelity EM Models
PublicationAccelerated simulation-driven design optimization of antenna structures is proposed. Variable-fidelity electromagnetic (EM) analysis is used as well as the trust-region framework with limited sensitivity updates. The latter are controlled by monitoring the changes of the antenna response gradients. Our methodology is verified using three compact wideband antennas. Comprehensive benchmarking demonstrates its superiority over both...
-
Automatic Correction of Non-Anechoic Antenna Measurements using Low-Pass Filters
PublicationPrototype measurements belong to key steps in the development of antenna structures. They are normally performed in expensive facilities, such as anechoic chambers (ACs). Alternatively, antenna performance can be extracted (at a low cost) in non-anechoic conditions upon appropriate post-processing. Unfortunately, existing correction algorithms are difficult to set up and prone to failure, which limits their practical usefulness....
-
Review of Recent Advancement on Nature/Bio-inspired Antenna Designs
PublicationThis article presents an extensive examination of antennas rooted in nature and biology, showcasing their remarkable performance across a wide spectrum of frequencies—from microwave to terahertz. The limitations of traditional antenna design have become increasingly evident in the face of burgeoning demands for novel communication technologies. Conventional analytical-equation-based approaches struggle to deliver the combined performance...
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublicationThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
On Decomposition-Based Surrogate-Assisted Optimization of Leaky Wave Antenna Input Characteristics for Beam Scanning Applications
PublicationRecent years have witnessed a growing interest in reconfigurable antenna systems. Travelling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process of TWAs/LWAs is a challenging endeavor...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Improved jamming resistance using electronically steerable parasitic antenna radiator
PublicationThis paper presents an idea of using an Electronically Steerable Parasitic Antenna Radiator (ESPAR) for jamming suppression in IEEE 802.11b networks. Jamming (intentional interference) attacks are known to be effective and easy to perform, which may impose connectivity problems in applications concerning Internet of Things (IoT). In our paper, theoretical considerations are presented and the results of experiments performed in...
-
Efficient Multi-Objective Simulation-Driven Antenna Design Using Co-Kriging
PublicationA methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto...
-
On geometry parameterization for simulation-driven design closure of antenna structures
PublicationFull-wave electromagnetic (EM) simulation tools have become ubiquitous in antenna design, especially final tuning of geometry parameters. From the reliability standpoint, the recommended realization of EM-driven design is through rigorous numerical optimization. It is a challenging endeavor with the major issues related to the high computational cost of the process, but also the necessity of handling several objectives and constraints...
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
EM-Driven Multi-Objective Optimization of Antenna Structures in Multi-Dimensional Design Spaces
PublicationFeasible multi-objective optimization of antenna structures is presented. An initial set of Pareto optimal solutions is found using a multi-objective evolutionary algorithm (MOEA) working with a fast surrogate antenna model obtained by kriging interpolation of coarse-discretization EM simulation data. To make the surrogate construction computationally feasible in multi-dimensional design space, the space subset containing non-dominated...
-
Fast Multi-Objective Antenna Design Through Variable-Fidelity EM Simulations
PublicationA technique for fast multi-objective antenna optimization is introduced. A kriging interpolation surrogate constructed from sampled coarse-mesh EM simulations is utilized by multi-objective evolutionary algorithm (MOEA) to obtain the initial Pareto front approximation. The surrogate is defined in a subset of the original design space, determined by means of independently optimized individual objectives. Response correction techniques...
-
Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space
PublicationA surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective...
-
Low-cost 3D Printed Circularly Polarized Lens Antenna for 5.9 GHz V2X Applications
PublicationThis paper presents design and realization of a circularly polarized antenna consisting of a linearly polarized patch antenna and a 3D printed lens, at the same time performing the functions of wave collimator and a polarizer. The antenna is dedicated for 802.11p systems, as a part of road infrastructure, with operation bandwidth 5.85 - 5.925 GHz. Its realised gain and axial ratio at center frequency 5.9 GHz are 14.3 dBi and 2.17...
-
A Wideband Rotary-Joint-Free H-Plane Horn Antenna With 360° Steerable Radiation Pattern Using Gap Waveguide Technology
PublicationConsidering the limitations of electronically steerable antennas such as limited steering span, gain degradation for large steering angles, complexity, and cost, this article is focused on the design of a simple mechanically steerable H-plane horn antenna. It is shown that since there is no need for an electrical connection between the top and bottom sections of a gap waveguide (GWG), if a sectoral horn is properly designed and realized...
-
Highly Miniaturized Self-Diplexed U-Shaped Slot Antenna Based on Shielded QMSIW
PublicationThis article presents an efficient yet simple design approach to highly miniaturized cavity-backed self-diplexing antenna (SDA) with high-isolation. The structure employs a shielded quarter-mode substrate integrated waveguide (QMSIW). Two U-shaped slots are engraved on the top conducting plane, which realize two frequency bands and significant size reduction. The slots are excited by two independent 50Ω orthogonal feed-lines to...
-
Reliable Surrogate Modeling of Antenna Input Characteristics by Means of Domain Confinement and Principal Components
PublicationA reliable design of contemporary antenna structures necessarily involves full-wave electromagnetic (EM) analysis which is the only tool capable of accounting, for example, for element coupling or the effects of connectors. As EM simulations tend to be CPU-intensive, surrogate modeling allows for relieving the computational overhead of design tasks that require numerous analyses, for example, parametric optimization or uncertainty...
-
Expedited antenna optimization with numerical derivatives and gradient change tracking
PublicationDesign automation has been playing an increasing role in the development of novel antenna structures for various applications. One of its aspects is electromagnetic (EM)-driven design closure, typically applied upon establishing the antenna topology, and aiming at adjustment of geometry parameters to boost the performance figures as much as possible. Parametric optimization is often realized using local methods given usually reasonable...
-
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
PublicationDesign of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties...
-
RSS-Based DoA Estimation Using ESPAR Antenna for V2X Applications in 802.11p Frequency Band
PublicationIn this paper, we have proposed direction-of arrival (DoA) estimation of incoming signals for V2X applications in 802. 11p frequency band, based on recording of received signal strength (RSS) at electronically steerable parasitic array radiator (ESPAR) antenna's output port. The motivation of the work was to prove that ESPAR antenna used to increase connectivity and security in V2X communication can be also used for DoA estimation....
-
Rotational Design Space Reduction for Cost-Efficient Multi-Objective Antenna Optimization
PublicationCost-efficient multi-objective design of antenna structures is presented. Our approach is based on design space reduction algorithm using auxiliary single-objective optimization runs and coordinate system rotation. The initial set of Pareto-optimal solutions is obtained by optimizing a response surface approximation model established in the reduced space using coarse-discretization EM simulation data. The optimization engine is...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublicationIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach
PublicationIn this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using lowprofile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely...
-
Accurate Post-processing of Spatially-Separated Antenna Measurements Realized in Non-Anechoic Environments
PublicationAntenna far-field performance is normally evaluated in expensive laboratories that maintain strict control over the propagation environment. Alternatively, the responses can be measured in non-anechoic conditions and then refined to extract the information on the structure field-related behavior. Here, a framework for correction of antenna measurements performed in non-anechoic test site has been proposed. The method involves automatic...
-
Compact Substrate-Integrated Hexagonal Cavity-Backed Self-Hexaplexing Antenna for Sub-6 GHz Applications
PublicationA self-multiplexing SIW antenna based on hexagonal SIW cavity is proposed. The self-hexaplexing antenna consists of different sizes of resonating elements, which provide the hexaband operations. The antenna resonates at 5 GHz, 5.17 GHz, 5.32 GHz, 5.53 GHz, 5.62 GHz, and 5.72 GHz by employing different slot lengths between the resonating elements. The proposed antenna provides the individual tunable characteristics of the operating...
-
Modelling of mutual coupling in microstrip antenna arrays fed by microstrip line. Modelowanie sprzężenia w szykach anten mikropaskowych zasilanych przez linie mikropaskowe.
PublicationPrzedstawiono wyniki modelowania sprzężenia pomiędzy prostokątnymi radiatorami mikropaskowymi w szyku liniowym anten zasilanych przez linie mikropaskowe. Zaproponowano schemat zastępczy sprzężenia w postaci kombinacji linii transmisyjnych wraz z sękami zwartymi i rozwartymi. Pokazano, że schemat taki dobrze modeluje sprzężenie w wąskim pasmie częstotliwości ok. 4%. Wyniki modelowania sprawdzono eksperymentalnie poprzez pomiary...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublicationElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...
-
Numerically Efficient Miniaturization-Oriented Optimization of an Ultra-Wideband Spline-Parameterized Antenna
PublicationDesign of ultra-wideband radiators for modern handheld applications is a challenging task that involves not only selection of an appropriate topology, but also its tuning oriented towards balancing the electrical performance and size. In this work, a low-cost design of a compact, broadband, spline-parameterized monopole antenna has been considered. The framework used for the structure design implements trust-region-based methods,...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Topological modifications for performance improvement and size reduction of wideband antenna structures
PublicationCompact antennas belong to the key components of modern communication systems. Their miniaturization is often achieved by introducing appropriate topological changes such as simple ground plane slots or tapered feeds. More sophisticated modifications are rarely considered in the literature because they normally lead to significant increase of the number of tunable parameters, which makes the antenna design process more challenging....
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Pareto Ranking Bisection Algorithm for Expedited Multi-Objective Optimization of Antenna Structures
PublicationThe purpose of this letter is introduction of a novel methodology for expedited multi-objective design of antenna structures. The key component of the presented approach is fast identification of the initial representation of the Pareto front (i.e., a set of design representing the best possible trade-offs between conflicting objectives) using a Pareto-ranking bisection algorithm. The algorithm finds a discrete set of Pareto-optimal...
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Multi-Taper-Based Automatic Correction of Non-Anechoic Antenna Measurements
PublicationPrototype measurements belong to the key steps in the development of antenna structures. Although accurate validation of their far-field performance can be realized in dedicated facilities, such as anechoic chambers, the high cost of their construction and maintenance might not be justified if the main goal of measurements is to support teaching or low-budget research. Instead, they can be performed in non-anechoic conditions and...
-
Excitation of Circularly Polarized Wave via Single-Feed Metasurface-Integrated Compact Antenna for Internet of Things
PublicationA compact circularly polarized (CP) quasi-omnidirectional antenna is introduced for internet of things (IoT). The structure consists of two components implemented on FR-4 substrates, and sep-arated by an air gap: one printed with a rectangular patch fed through a matching network, and another with a metasurface and a ground plane. Two different methods for impedance matching are employed. An equivalent circuit model of the antenna...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublicationA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
RSS-Based DoA Estimation Using ESPAR Antenna Radiation Patterns Spline Interpolation
PublicationIn this paper, it is shown how power pattern crosscorrelation (PPCC) algorithm, which relies on received signal strength (RSS) values recorded at electronically steerable parasitic array radiator (ESPAR) antenna output port, used for direction-of-arrival (DoA) estimation, can easily be improved by applying spline interpolation to radiation patterns recorded in the calibration phase of the DoA estimation process. The proposed method...
-
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublicationParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
PublicationThis paper presents a novel frequencyreconfigurable self-diplexing antenna (SDA) utilizing a hybrid substrate-integrated waveguide (SIW). The antenna comprises a radiating slot, a feeding network, and a hybrid SIW cavity featuring half-mode circular and half-mode rectangular SIW structures. The unique feature of this antenna lies in its fine-tuning capability of each resonant frequency by inserting or injecting solid and liquid...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...