Search results for: COSSERAT SURFACE
-
An isogeometric finite element formulation for frictionless contact of Cosserat rods with unconstrained directors
PublicationThis paper presents an isogeometric finite element formulation for nonlinear beams with impenetrability constraints, based on the kinematics of Cosserat rods with unconstrained directors. The beam cross-sectional deformation is represented by director vectors of an arbitrary order. For the frictionless lateral beam-to-beam contact, a surface-to-surface contact algorithm combined with an active set strategy and a penalty method...
-
On FEM analysis of Cosserat-type stiffened shells. Static and stability linear analysis
PublicationThe present research investigates the theory and numerical analysis of shells stiffened with beams in the framework based on the geometrically exact theories of shells and beams. Shell’s and beam’s kinematics are described by the Cosserat surface and the Cosserat rod respectively, which are consistent including deformation and strain measures. A FEM approximation of the virtual work principle leads to the conforming shell and beam...
-
Elastoplastic law of Cosserat type in shell theory with drilling rotation
PublicationWithin the framework of six-parameter non-linear shell theory, with strain measures of the Cosserat type, we develop small-strain J2-type elastoplastic constitutive relations. The relations are obtained from the Cosserat plane stress relations assumed in each shell layer, by through-the-thickness integration employing the first-order shear theory. The formulation allows for unlimited translations and rotations. The constitutive...
-
Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type
PublicationThe paper is a continuation of [1] where the formulation of the elastic constitutive law for functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter (the drilling degree of freedom) was presented. Here the formulation is extended to the elasto-plastic range. The material law is based on Cosserat plasticity and employs the well-known Tamura-Tomota-Ozawa (TTO) [2] mixture...
-
On Non-holonomic Boundary Conditions within the Nonlinear Cosserat Continuum
PublicationWithin the framework of the nonlinear micropolar elastic continuum we discuss non-holonomic kinematic boundary conditions. By non-holonomic boundary conditions we mean linear relations between virtual displacements and virtual rotations given on the boundary. Such boundary conditions can be used for modelling of complex material interactions in the vicinity of the boundaries and interfaces.
-
Fem analysis of cosserat plates and shells based on some constitutive relations
PublicationPrzeprowadzono studium doboru mikropolarnych współczynników konstytutywnych w pewnym modelu płyty Cosseratów. Wyznaczono ograniczenia na ich wartości i przeprowadzono parametryczną analizę wpływu tych współczynników na geometrycznie nieliniowe deformacje powłok z ortogonalnymi przecięciami płatów.
-
Structural response of existing spatial truss roof construction based on Cosserat rod theory
PublicationPaper presents the application of the Cosserat rod theory and newly developed associated finite elements code as the tools that support in the expert-designing engineering practice. Mechanical principles of the 3D spatially curved rods, dynamics (statics) laws, principle of virtual work are discussed. Corresponding FEM approach with interpolation and accumulation techniques of state variables are shown that enable the formulation...
-
2-D constitutive equations for orthotropic Cosserat type laminated shells in finite element analysis
PublicationWe propose 2-D Cosserat type orthotropic constitutive equations for laminated shells for the purpose of initial failure estimation in a laminate layer. We use nonlinear 6-parameter shell theory with asymmetric membrane strain measures and Cosserat kinematics as the framework. This theory is specially dedicated to the analysis of irregular shells, inter alia, with orthogonal intersections, since it takes into account the drilling...
-
Non-standard contact conditions in generalized continua: microblock contact model for a Cosserat body
PublicationGeneralized continuum theories involve non-standard boundary conditions that are associated with the additional kinematic variables introduced in those theories, e.g., higher gradients of the displacement field or additional kinematic degrees of freedom. Accordingly, formulation of a contact problem for such a continuum necessarily requires that adequate contact conditions are formulated for the additional kinematic variables and/or...
-
Geometrically Nonlinear Analysis of Functionally Graded Shells Based on 2-D Cosserat Constitutive Model
PublicationIn this paper geometrically nonlinear analysis of functionally graded shells in 6-parameter shell theory is presented. It is assumed that the shell consists of two constituents: ceramic and metal. The mechanical properties are graded through the thickness and are described by power law distribution. Formulation based on 2-D Cosserat constitutive model is used to derive constitutive relation for functionally graded shells. Numerical...
-
Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublicationMixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based onthe three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.The...
-
Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory
PublicationThe paper presents the formulation of the elastic constitutive law for functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter being the drilling degree of freedom. The material law is derived by through-the-thickness integration of the Cosserat plane stress equations. The constitutive equations are formulated with respect to the neutral physical surface. The influence of...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublicationWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Particle rotation effects in Cosserat-Maxwell boundary layer flow with non-Fourier heat transfer using a new novel approach
Publication -
A Nonlinear Model of a Mesh Shell
PublicationFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
-
On the exact equilibrium conditions of irregular shells reinforced by beams along the junctions
PublicationThe exact, resultant equilibrium conditions for irregular shells reinforced by beams along the junctions are formulated. The equilibrium conditions are derived by performing direct integration of the global equilibrium conditions of continuum mechanics. New, exact resultant static continuity conditions along the singular curve modelling reinforced junction are presented. The results do not depend on shell thickness, internal through-the-thickness...
-
On rotational instability within the nonlinear six-parameter shell theory
PublicationWithin the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters...
-
Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory
PublicationThe development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation...
-
Modeling of Composite Shells in 6-Parameter Nonlinear Theory with Drilling Degree of Freedom
PublicationWithin the framework of a 6-parameter nonlinear shell theory, with strain measures of Cosserat type, constitutive relations are proposed for thin elastic composite shells. The material law is expressed in terms of five engineering constants of classical anisotropic continuum plus an additional parameter accounting for drilling stiffness. The theory allows for unlimited displacements and rotations. A number of examples are presented...
-
In-plane shear nonlinearity in failure behavior of angle-ply laminated shells
PublicationThe paper concerns the progressive failure analysis of laminates with the in-plane shear nonlinearity accounted for.The nonlinear shear response of the layer is described by the constitutive relation treating the stresses as a function of strains. Thus it can be easily incorporated into the displacement-based FEM codes. The brittle failure mechanisms of the fibers and the matrix of the layer are recognized with the use of the Hashin...
-
Progressive failure analysis of laminates in the framework of 6-field nonlinear shell theory
PublicationThe paper presents the model of progressive failure analysis of laminates incorporated into the 6-field non-linear shell theory with non-symmetrical strain measures of Cosserat type. Such a theory is specially recommended in the analysis of shells with intersections due to its specific kinematics including the so-called drilling rotation. As a consequence of asymmetry of strain measures, modified laminates failure criteria must...
-
Ellipticity in couple-stress elasticity
PublicationWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublicationFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublicationThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...