Search results for: Cold recycling
-
Environmentally-Safe Cold Recycling of Asphalt Pavements in Poland
PublicationArtykuł przedstawia metodę recyklingu na zimno z zastosowaniem jednoczesnego dodatku cementu portlandzkiego i emulsji asfaltowej. Metoda przydatna do rehabilitacji zniszczonych nawierzchni drogowych. Warstwy po recyklingu charakteryzują się sztywnością i podatnością. Przedstawiono wyniki badań laboratoryjnych i terenowych.
-
BINDER COURSES USING COLD RECYCLED MIXTURES – A NOVEL CONCEPT IN COLD RECYCLING
PublicationCold recycling with cement and bituminous emulsion is one of the most environmentally friendly techniques to maximize the reuse of reclaimed asphalt (RA) collected during demolition of roads. Cold recycled mixtures are commonly used for base courses in construction or rehabilitation of flexible and semi-rigid pavements. Current experiences demonstrated that cold recycling with appropriate requirements and technical recommendations...
-
Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements
PublicationThe article presents Polish experience with cold recycling of asphalt pavements with theusage of bituminous emulsion and cement. In the 1990s numerous roads in Polandrequired immediate reinforcement due to their significant degradation. Implementation ofthe cold recycling technology was one of the solutions to this problem. Cold recycledmixtures containebeside the recycled asphalt pavement and aggregateetwo differenttypes of binding...
-
Polish experience with cold in-place recycling
PublicationDeep cold in-place recycling using cement and asphalt emulsion has been used for reconstruction of existing roads since the beginning of the 1990s. This paper describes the first Polish requirements for mineral-cement-emulsion mixtures. As requirements stated for the strength of the mineral-cement-emulsion mixtures were quite high, most of the mixtures were designed using high amount of cement and aggregate added for the improvement...
-
The Influence of Cement Type on Early Properties of Cold In-Place Recycled Mixtures
PublicationCold in-place recycling is a commonly used maintenance treatment in rehabilitation of low and medium volume roads in Poland. Typically, two types of binding agents are used—cement and bituminous emulsion (or foamed bitumen).Due to the harsh Polish climate with many freeze/thaw cycles and frequent occurrence of saturated conditions, the used amounts of cement are higher than those commonly used in warmer parts of Europe. While there...
-
Effect of strain level on the stiffness of cold recycled bituminous mixtures
PublicationCold recycling is a sustainable technology for the rehabilitation of bitumi-nous pavements. This study investigates the stiffness response of cement-bitumen treated materials (CBTM)manufactured with 80% reclaimed asphalt and treated with 2.0% Portland cement and 4.0% bitumen emulsion. Indirect tensile stiffness modulus tests were carried out to assess the strain dependence of stiffness at target horizontal deformation levels between...
-
Cold recycled mixtures for binder courses - laboratory evaluation of mechanical properties
PublicationCold recycled mixtures composed with cement and bituminous emulsion are nowadays commonly used material for base layer. Typical pavement with cold recycled mixtures usually consists of two asphalt courses (wearing and binding course) constructed over cold recycled base. Therefore the next step in cold recycling is possibility of design of binding courses with recycled materials, but with potential to obtain high quality mixtures...
-
The dependence of linear viscoelasticity limits of cold-recycled mixtures on time of curing and compaction method
PublicationCold-recycled mixtures are currently among the most widely used and investigated methods that enable recycling of old pavement structures in an environmentally friendly manner. Upon milling, the old pavement structure – whose gradation can be improved with addition of virgin aggregate – is mixed and compacted at ambient temperature. The main binding agents are bituminous emulsion and cement. Due to their dual binding behaviour,...
-
Evaluation of the stiffness modulus and phase angle of cold in-place recycled mix-tures for long curing periods
PublicationArticle presents the changes inbehaviour of cold-in place recycling mixtures made using cement and bituminous emulsion (CIR mixtures) after anelongated time of curing. Most of the available literatureregarding change instiffness modulus and phase angle presents resultsfor a maximum of several dozen days,which makesit difficult to predict the behaviour over the whole life of the compacted layer. The article...
-
Comparative Study of the Mechanical Behaviour of Bitumen- and Cement-Dominated Mixtures with Reclaimed Asphalt
PublicationThe bitumen emulsion-based recycling is a commonly used maintenance treatment in the rehabilitation of low-and medium-volume roads in Europe. Nevertheless, the wide range of climatic conditions across the continent resulted in the variety of mixture concepts and the requirements being adopted for various local conditions. In this regard, the most commonly used parameter to distinguish between the main mixture concepts is bitumen...
-
Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial
PublicationIn many Baltic regions, short-rotation willow (Salix spp.) is used as a vegetation filter for wastewater treatment and recycling of valuable nutrients to upsurge bioeconomy development. In this context, a four-year field trial (2016–2019) was carried out near a wastewater treatment plant in eastern Finland (Outokumpu) to investigate the effect of the processed wastewater (WW) on biomass production as well as the nutrients uptake...
-
The Impact of Long-Time Chemical Bonds in Mineral-Cement-Emulsion Mixtures on Stiffness Modulus
PublicationDeep cold in-place recycling is the most popular method of reuse of existing old and deteriorated asphalt layers of road pavements. In Poland, in most cases, the Mineral-Cement-Emulsion mixture technology is used, but there are also applications combining foamed bitumen and cement. Mineral-Cement-Emulsion mixtures contain two different binding agents – cement as well as asphalt from the asphalt emulsion. Asphalt creates asphalt...
-
The long-term properties of mineral-cement-emulsion mixtures
PublicationThis publication presents evaluation of long-term behavior of mineral-cement-emulsion (MCE) mixtures. MCE mixtures are among the major products of cold recycling of old asphalt pavements. They are composed by binding of the old materials reclaimed from the pavement and new mineral aggregate using two different binding agents – cement and bituminous emulsion. While bituminous emulsion dissolutes and binds materials quite fast, it...
-
Ocena odporności na pękanie podbudów drogowych z mieszanek mineralno-cementowo-emulsyjnych (MCE)
PublicationPodbudowy z mieszanek mineralno-cementowo-emulsyjnych (MCE) są jednym z wielu materiałów stosowanych do wykonywania warstw nawierzchni w ramach przebudów dróg w Polsce. Mieszanki MCE pozwalają na maksymalne powtórne wykorzystanie istniejących warstw konstrukcyjnych do budowy lub przebudowy nawierzchni. Do wykonania podbudów z MCE stosuje się materiał pochodzący z rozbiórki istniejących warstw (destrukt) bitumicznych, warstw związanych...
-
Piotr Jaskuła dr hab. inż.
PeopleI am a Faculty member (Associate Professor, Highway and Transportation Research Department) at the Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland).My main research interests include: pavement structures, interlayer bonding, pavement materials, recycling of road pavements, asphalt mixtures, bitumens, construction and maintenance of pavement structures.My lectures at the University include:...
-
Stiffness of cold-recycled mixtures under variable deformation conditions in the IT-CY test
PublicationStiffness modulus belongs to the most important properties describing the cold-recycled mixtures (CRM) in terms of their usability in road pavement structures. Previous research proved that this property is strongly dependent on the scheme and conditions of the test (temperature and time of loading) and the time that has passed since the compaction of the specimen or pavement layer. It is a result of the influence of two different...
-
One year performance evaluation of low volume road with cold recycled base course on the basis of FWD and Dynamic Modulus tests
PublicationArticle presents results of assessment of performance of trial section of flexible pavement with cold recycled base constructed on low volume road within typical contract conditions. Performance evaluation was made based on Falling Weight Deflectometer (FWD) test performed during construction stage – 2 times on the top of cold recycled base course – 28 and 180 days after compaction of base course and 2 times on the top of the wearing...
-
The influence of combination of binding agents on fatigue properties of deep cold in-place recycled mixtures in Indirect Tensile Fatigue Test (ITFT)
PublicationThe publication presents fatigue properties of cold recycled mixtures for eight combinations of binding agents (cement and bituminous emulsion). Cold recycled mixtures were evaluated in Indirect Tensile Fatigue Test (ITFT) at the temperature of 20 C in controlled stress mode. As a function of horizontal stress, fatigue life is strongly influenced by combination of the binding agents. When fatigue life is analyzed as a function...
-
A Deformation Sweep Testing Procedure to Evaluate Damage in Cold Recycled Material Mixtures
PublicationThis chapter describes a new testing procedure to assess damage in cold recycled material mixtures. Specifically, stiffness modulus tests were performed at increasing deformation levels, with the objective of creating a gradual increase in damage. The succession of tests with increasing deformation was interspersed with tests at small deformation, with the objective of evaluating the damage gradually inflicted on the specimen....
-
Complex modulus of Cement Bitumen Treated Material Mixture C3E4 cores obtained from the field section (28-365 days of curing at the field and later in laboratory at 20C)
Open Research DataDataset presents data of complex modulus determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Specimen were obtained from the field at 28, 180, 270 and 365 days after compaction....
-
Fatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (over 28 days of curing at 20C)
Open Research DataFatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (over 28 days of curing at 20C)
-
Complex modulus of Cement Bitumen Treated Material Mixture C3E4 laboratory mixed/laboratory compacted (7-365 days of curing at 20C)
Open Research DataDataset presents data of complex modulus determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Mixture was mixed in laboratory conditions on the basis of materials obtained from...
-
Deflection measurement of field section with pavement with base course made of Cement Bitumen Treated Material Mixture C3E4 (28, 180, 270, 365 days after compaction)
Open Research DataDataset presents data of deflections determined for pavement with base course made of cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Mixture was mixed in stationary plant and compacted...
-
Complex modulus of Cement Bitumen Treated Material Mixture C3E4 field mixed/laboratory compacted (7-365 days of curing at 20C)
Open Research DataDataset presents data of complex modulus determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Mixture was mixed in the field conditions and later compacted in laboratory. Mixture...
-
Deformation Sweep Test of Cement Bitumen Treated Material Mixture C3E5.5 (field obtained material; over 28 days of curing at 20C)
Open Research DataDataset presents data of results of deformation sweep test determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement and 5.5% emulsion (C3E5.5). Mixture was designed according to Polish requirements for the base course of pavement. Mixture contains 60% of RAP material. Specimen size: f=100...
-
Deformation Sweep Test of Cement Bitumen Treated Material Mixture C3E5.5 (field cores; field curing)
Open Research DataDataset presents data of results of deformation sweep test determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement and 5.5% emulsion (C3E5.5). Mixture was designed according to Polish requirements for the base course of pavement. Mixture contains 60% of RAP material. Specimen size: f=100...
-
Complex modulus of Cement Bitumen Treated Material Mixture (28 days of curing at 20C)
Open Research DataDataset presents data of complex modulus determined for cold recycled mixture – cement bitumen treated material mixture with 3 combinations of binding agents: 2% cement, 6% emulsion (C2E6), 6% cement, 6% emulsion (C6E6), 6% cement, 2% emulsion (C6E2). Mixture was designed according to Polish requirements for the base course of pavement. Mixture contains...
-
Fatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (over 28 days of curing at 20C, field cores)
Open Research DataDataset presents data of fatigue life determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement and 5.5% emulsion (C3E5.5). Mixture was designed according to Polish requirements for the base course of pavement. Mixture contains 60% of RAP material. Specimen size: f=100 mm, h=48,4 - 70,9 mm.