Search results for: METALLIC IMPLANTS
-
Degradation of metallic implants
PublicationPresence of metallic implants made of stainless steels, Co and Ti alloys is sometimes followed by some undesired allergic reactions and inflammatory processes and consequently the necessity of reimplantation.
-
3D Printing of Metallic Implants
PublicationThe fabrication of various elements, solid and open porous structures of stainless steel and Ti alloy is described. The process was started with the design of 3D models in CAD/CAM system. The 3D models were transformed into *.stl files and then the manufacturing process of the real structures by means of the selective laser melting with the SLM Realizer 100 3D printer was made. The paper shows the porous specimens made for possible...
-
Conducting polymers for biodegradable metallic implants
PublicationNowadays permanent metallic cardiovascular stents are long-term implants. The long-time presence of such an implant in human body can cause overgrowth of tissue within the treated portion of the vessel, blockage of the circulatory system and many other clinical complications, such as thrombosis, prolonged physical irritations or chronic inflammation. Therefore, in recent years, there is an interest to create biodegradable metallic...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Biocompatibility and Bioactivity of Load-Bearing Metallic Implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Biocompatibility and bioactivity of bearing loaded metallic implants
PublicationPresentation of developed titanium alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behavior for bearing loaded implants, e.g. hip joint and knee joint endoproshtesis.
-
The allergic and irritating reactions to metallic implants with trauma - orthopaedic patients
PublicationThe article presents the analysis of clinical operation complications after the treatment of long bones by mean of ostheosynthesis with the use of metal implants and endoprothesoplastic of hip joints.
-
Formation of Porous Structure of the Metallic Materials Used on Bone Implants
PublicationResearch on improvement of structure and fabrication methods of the bone implants are carried out for many years. Research are aimed to shape the structures, that will have a Young's modulus value similar to the value of the human bones Young's modulus. Depending on theporosity, Young's moduli can even be tailored to match the modulus of bone closer than solid metals can, thus reducing the problems associated with stress shielding...
-
Investigations of Titanium Implants Covered with Hydroxyapatite Layer
PublicationTo reduce unfavorable phenomena occurring after introducing an implant into human body various modifications of the surface are suggested. Such modifications may have significant impact on biocompatibility of metallic materials. The titanium and it's alloys are commonly used for joint and dental implants due to their high endurance, low plasticity modulus, good corrosion resistance as well as biocompatibility. Special attention...
-
Allergic reactions as a defense of the organism to the influence of implants components made of stainless steel
PublicationDue to the increasing number of cases of hypersensitivity caused by direct contact with metals, as well as the increasing demand for implants in humans all ages numerous studies on the effects of the impact of implant components are being carried out. The paper presents the phenomenon of etiology of allergy in general terms and in relation to the biomaterials used in medicine. There have been characterized in terms of impact on...
-
Allergic Reactions as a Defense of the Organism to the Influence of Implants Components Made of Stainless Steel
PublicationDue to the increasing number of cases of hypersensitivity caused by direct contact with metals, as well as the increasing demand for implants in humans all ages numerous studies on the effects of the impact of implant components are being carried out. The paper presents the phenomenon of etiology of allergy in general terms and in relation to the biomaterials used in medicine. There have been characterized in terms of impact on...
-
Degradation of implantable materials – in vivo and in vitro research
PublicationThe article concerns the biological and electrochemical degradation of metallic implants in vivo and in vitro studies. The in vivo research dealt with degradation of plates used to join bones, as well as endoprostheses. The most common damages were: metalosis, breaking in the microstructure changes, breaking in area of holes, as well as plastic deformation throughout the length of an implant. The material used for the research...
-
Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior
PublicationTitanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment,...
-
Electrophoretic deposition and characterization of composite chitosan/Eudragit E 100 or poly(4-vinylpyridine)/mesoporous bioactive glass nanoparticles coatings on pre-treated titanium for implant applications
PublicationTitanium implants are surface-modified to achieve bioactivity and often antibacterial properties. Such surface coatings may increase corrosion degradation and be weakly attached to the substrate. In the present research, biodegradable composite coatings, investigated so far as smart environment-sensitive, slowly releasing silver to the implant neighborhood, were produced as a combination of chitosan (CS) with Eudragit E 100 (EE100)...
-
Osteoblast and bacterial cell response on RGD peptide‐functionalized chitosan coatings electrophoretically deposited from different suspensions on Ti13Nb13Zr alloy
PublicationMetallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid...
-
Production and Properties of the Porous Layer Obtained by the Electrochemical Method on the Surface of Austenitic Steel
Publication: The growing demand for implants has seen increasing interest in the introduction of new technologies and surface modification methods of metal biomaterials. This research aimed to produce and characterize a porous layer grown on austenitic stainless steel 316L, obtained via the anodization process near the micro-arc oxidation, i.e., low voltage micro-arc oxidation (LVMAO). The discussed layer significantly influences the properties...
-
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy
PublicationNowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of...
-
PARAMETERS OF THE ELECTROPHORETIC DEPOSITION PROCESS AND ITS INFLUENCE ON THE MORPHOLOGY OF HYDROXYAPATITE COATINGS. REVIEW
PublicationMetallic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
Deposition of phosphate coatings on titanium within scaffold structure
PublicationPurpose: Existing knowledge about the appearance, thickness, and chemical composition of phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is important for the design and fabrication of porous implants. Methods: Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds or...