Search results for: MUSIC CLASSIFICATION
-
Parametrization and Correlation Analysis Applied to Music Mood Classification .
PublicationThe paper presents a study on music mood categorization. First, a review of music mood models is presented. Then, the preparation of a set of music excerpts to be used in the experiments and music parametrization is described. Next, some listening tasks performed to obtain mood descriptors are introduced. Finally,the correlation between mood descriptors and features extracted from parameters is discussed. The paper concludes with...
-
Classification of Music Genres by Means of Listening Tests and Decision Algorithms
PublicationThe paper compares the results of audio excerpt assignment to a music genre obtained in listening tests and classification by means of decision algorithms. A short review on music description employing music styles and genres is given. Then, assumptions of listening tests to be carried out along with an online survey for assigning audio samples to selected music genres are presented. A framework for music parametrization is created...
-
Music genre classification applied to bass enhancement for mobile technology
PublicationThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The proposed algorithm is related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt. The classification of music genres is automatically executed employing MPEG 7 parameters and the Principal Component Analysis method applied to reduce information...
-
Smart Virtual Bass Synthesis Algorithm Based on Music Genre Classification
PublicationThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The proposed algorithm employed automatic music genre recognition to determine the optimum parameters for the synthesis of additional frequencies. The synthesis was carried out using the non-linear device (NLD) and phase vocoder (PV) methods depending on the music excerpt genre. Classification of musical...
-
Classification of Music Genres Based on Music Separation into Harmonic and Drum Components . Klasyfikacja gatunków muzycznych wykorzystująca separację instrumentów muzycznych
PublicationThis article presents a study on music genre classification based on music separation into harmonic and drum components. For this purpose, audio signal separation is executed to extend the overall vector of parameters by new descriptors extracted from harmonic and/or drum music content. The study is performed using the ISMIS database of music files represented by vectors of parameters containing music features. The Support Vector...
-
Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques.
PublicationArtykuł przedstawia w sposób przeglądowy prace Katedry Systemów Multimedialnych Politechniki Gdańskiej związane z wyszukiwaniem informacji muzycznej, a w szczególności z klasyfikacją dźwięków instrumentów muzycznych. W opisywanych eksperymentach wykorzystano sztuczne sieci neuronowe.
-
A Study on Influence of Normalization Methods on Music Genre Classification Results Employing kNN Algorithms
PublicationThis paper presents a comparison of different normalization methods applied to the set of feature vectors of music pieces. Test results show the influence of min-nlax and Zero-Mean normalization methods, employing different distance functions (Euclidean, Manhattan, Chebyshev, Minkowski) as a pre-processing for genre classification, on k-Nearest Neighbor (kNN) algorithm classification results.
-
Musical Instrument Separation Applied to Music Genre Classification . Separacja instrumentów muzycznych w zastosowaniu do rozpoznawania gatunków muzycznych
PublicationThis paper outlines first issues related to music genre classification and a short description of algorithms used for musical instrument separation. Also, the paper presents proposed optimization of the feature vectors used for music genre recognition. Then, the ability of decision algorithms to properly recognize music genres is discussed based on two databases. In addition, results are cited for another database with regard to...
-
Automatic music genre classification based on musical instrument track separation / Automatyczna klasyfikacja gatunku muzycznego wykorzystująca algorytm separacji dźwięku instrumentó muzycznych
PublicationThe aim of this article is to investigate whether separating music tracks at the pre-processing phase and extending feature vector by parameters related to the specific musical instruments that are characteristic for the given musical genre allow for efficient automatic musical genre classification in case of database containing thousands of music excerpts and a dozen of genres. Results of extensive experiments show that the approach...
-
Michał Lech dr inż.
PeopleMichał Lech was born in Gdynia in 1983. In 2007 he graduated from the faculty of Electronics, Telecommunications and Informatics of Gdansk University of Technology. In June 2013, he received his Ph.D. degree. The subject of the dissertation was: “A Method and Algorithms for Controlling the Sound Mixing Processes by Hand Gestures Recognized Using Computer Vision”. The main focus of the thesis was the bias of audio perception caused...
-
SUBJECTIVE PERCEPTION OF MUSIC GENRES IN THE FIELD OF MUSIC INFORMATION RETRIEVAL SYSTEMS
PublicationThe aim of this paper is to evaluate the relationship between perception of music genres and subjective features of music that can be assigned to them. For this purpose a group of subjective features such as loudness, melody, rhythm, volume, instrumentation was chosen to describe music genres. A group of 30 listeners with normal hearing, ranging from 20 to 40, was created. Each sub-ject participating in listening tests was asked...
-
SUBJECTIVE PERCEPTION OF MUSIC GENRES IN THE FIELD OF MUSIC INFORMATION RETRIEVAL SYSTEMS
PublicationThe aim of this paper is to evaluate the relationship between perception of music genres and subjective features of music that can be assigned to them. For this purpose a group of subjective features such as loudness, melody, rhythm, volume, instrumentation was chosen to describe music genres. A group of 30 listeners with normal hearing, ranging from 20 to 40, was created. Each sub-ject participating in listening tests was asked...
-
Content-Based Approach to Automatic Recommendation of Music
PublicationThis paper presents a content-based approach to music recommendation. For this purpose, a database which contains more than 50000 music excerpts acquired from public repositories was built. Datasets contain tracks of distinct performers within several music genres. All music pieces were converted to mp3 format and then parameterized based on MPEG-7, mel-cepstral and time-related dedicated parameters. All feature vectors are stored...
-
Music Genre Recognition in the Rough Set-Based Environment
PublicationThe aim of this paper is to investigate music genre recognition in the rough set-based environment. Experiments involve a parameterized music data-base containing 1100 music excerpts. The database is divided into 11 classes cor-responding to music genres. Tests are conducted using the Rough Set Exploration System (RSES), a toolset for analyzing data with the use of methods based on the rough set theory. Classification effectiveness...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublicationThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
In uence of Low-Level Features Extracted from Rhythmic and Harmonic Sections on Music Genre Classi cation
PublicationWe present a comprehensive evaluation of the infuence of 'harmonic' and rhythmic sections contained in an audio file on automatic music genre classi cation. The study is performed using the ISMIS database composed of music files, which are represented by vectors of acoustic parameters describing low-level music features. Non-negative Matrix Factorization serves for blind separation of instrument components. Rhythmic components...
-
SYNAT Music Genre Parameters PCA 19
Open Research DataThe dataset contains feature vector after Principal Component Analysis (PCA) performing, so there are 11 music genres and 19-element vector derived from music excerpts. Originally, a feature vector containing 173 elements was conceived in earlier research studies carried out by the team of authors [1-6]. A collection of 52532 music excerpts described...
-
Real and Virtual Instruments in Machine Learning – Training and Comparison of Classification Results
PublicationThe continuous growth of the computing power of processors, as well as the fact that computational clusters can be created from combined machines, allows for increasing the complexity of algorithms that can be trained. The process, however, requires expanding the basis of the training sets. One of the main obstacles in music classification is the lack of high-quality, real-life recording database for every instrument with a variety...
-
SYNAT_PCA_48
Open Research DataThere is a series of datasets containing feature vectors derived from music tracks. The dataset contains 51582 music tracks (22 music genres) and feature vector after Principal Component Analysis (PCA) performing, so there are 48-element vectors derived from music excerpts. Originally, a feature vector containing 173 elements was conceived in earlier...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
SYNAT_PCA_11
Open Research DataThe dataset contains 51582 music tracks (22 music genres) and feature vector after Principal Component Analysis (PCA) performing, so there are 11-element vectors derived from music excerpts. Originally, a feature vector containing 173 elements was conceived in earlier research studies carried out by the team of authors [1-6]. A collection of more than...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Music Recommendation Based on Multidimensional Description and Similarity Measures . Rekomendacja muzyki na podstawie wielowymiarowego wektora cech i miar podobieństwa
PublicationThis study aims to create an algorithm for assessing the degree to which songs belong to genres defined a priori. Such an algorithm is not aimed at providing unambiguous classification-labelling of songs, but at producing a multidimensional description encompassing all of the defined genres. The algorithm utilized data derived from the most relevant examples belonging to a particular genre of music. For this condition to be met,...
-
SYNAT_MUSIC_GENRE_FV_173
Open Research DataThis is the original dataset containing 51582 music tracks (22 music genres) and 173 element-feature vector [1-6,9]. A collection of more than 50000 music excerpts described with a set of descriptors obtained through the analysis of 30-second mp3 recordings was gathered in a database called SYNAT. The SYNAT database was realized by the Gdansk University...
-
Evaluation of a Novel Approach to Virtual Bass Synthesis Strategy
PublicationThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) strategy applied to portable computers. The developed algorithms involve intelligent, rule-based settings of bass synthesis parameters with regard to music genre of an audio excerpt and the type of a portable device in use. The Smart VBS algorithm performs the synthesis based on a nonlinear device (NLD) with artificial controlling synthesis...
-
An Approach to Bass Enhancement in Portable Computers Employing Smart Virtual Bass Synthesis Algorithms
PublicationThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The developed algorithms are related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt and to the type of a portable device in use. To find optimum synthesis parameters of the VBS algorithms, subjective listening tests based on a parametric procedure...
-
Speech Analytics Based on Machine Learning
PublicationIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Classifying type of vehicles on the basis of data extracted from audio signal characteristics
PublicationThe aim of this study is to find and optimize a feature vector for an automatic recognition of the type of vehicles, extracted form an audio signal. First, the influence of weather-based conditions of road surface on spectral characteristic of the audio signal recorded from a passing vehicle in close proximity to the road is discussed. Next, parameterization of the recorded audio signal is performed. For that purpose, the MIRtoolbox,...
-
Comparison of the effectiveness of automatic EEG signal class separation algorithms
PublicationIn this paper, an algorithm for automatic brain activity class identification of EEG (electroencephalographic) signals is presented. EEG signals are gathered from seventeen subjects performing one of the three tasks: resting, watching a music video and playing a simple logic game. The methodology applied consists of several steps, namely: signal acquisition, signal processing utilizing z-score normalization, parametrization and...
-
Comparison of Lithuanian and Polish Consonant Phonemes Based on Acoustic Analysis – Preliminary Results
PublicationThe goal of this research is to find a set of acoustic parameters that are related to differences between Polish and Lithuanian language consonants. In order to identify these differences, an acoustic analysis is performed, and the phoneme sounds are described as the vectors of acoustic parameters. Parameters known from the speech domain as well as those from the music information retrieval area are employed. These parameters are...
-
A system for Direction-Of-Arrival estimation in ISM 2.4 GHz frequency band based on ESPAR antenna and SDR technology
PublicationDetermination of the direction of the signal arrival (DOA) finds many applications in various areas of science and industry. Knowledge of DOA is used, among others to determine the position of a satellite with a low Earth orbit (LEO), localization of people and things as well as in research of wireless communication systems, for instance the determination of the number of...
-
Bożena Kostek prof. dr hab. inż.
People -
Creating a Realible Music Discovery and Recomendation System
PublicationThe aim of this paper is to show problems related to creating a reliable music dis-covery system. The SYNAT database that contains audio files is used for the purpose of experiments. The files are divided into 22 classes corresponding to music genres with different cardinality. Of utmost importance for a reliable music recommendation system are the assignment of audio files to their appropriate gen-res and optimum parameterization...