Filters
total: 7238
-
Catalog
- Publications 5095 available results
- Journals 29 available results
- Conferences 1 available results
- People 98 available results
- Inventions 5 available results
- Projects 2 available results
- Laboratories 1 available results
- Research Teams 8 available results
- e-Learning Courses 155 available results
- Events 5 available results
- Open Research Data 1839 available results
displaying 1000 best results Help
Search results for: ROMAN DOMINATION NUMBER WEAKLY CONNECTED SET WEAKLY CONNECTED ROMAN DOMINATION NUMBER TREES
-
Weakly connected Roman domination in graphs
PublicationA Roman dominating function on a graph G=(V,E) is defined to be a function f :V → {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v)=2. A dominating set D⊆V is a weakly connected dominating set of G if the graph (V,E∩(D×V)) is connected. We define a weakly connected Roman dominating function on a graph G to be a Roman dominating function such that the set...
-
Progress on Roman and Weakly Connected Roman Graphs
PublicationA graph G for which γR(G)=2γ(G) is the Roman graph, and if γwcR(G)=2γwc(G), then G is the weakly connected Roman graph. In this paper, we show that the decision problem of whether a bipartite graph is Roman is a co-NP-hard problem. Next, we prove similar results for weakly connected Roman graphs. We also study Roman trees improving the result of M.A. Henning’s A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002)....
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublicationA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...
-
Lower bound on the weakly connected domination number of a tree
PublicationPraca dotyczy dolnego ograniczenia liczby dominowania słabo spójnego w drzewach (ograniczenie ze względu na ilość wierzchołków i ilość wierzchołków końcowych w drzewie).
-
On the connected and weakly convex domination numbers
PublicationIn this paper we study relations between connected and weakly convex domination numbers. We show that in general the difference between these numbers can be arbitrarily large and we focus on the graphs for which a weakly convex domination number equals a connected domination number. We also study the influence of the edge removing on the weakly convex domination number, in particular we show that a weakly convex domination number...
-
Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
PublicationGiven two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...
-
Weakly connected domination stable trees [online]
PublicationPraca dotyczy pełnej charakteryzacji drzew stabilnych ze względu na liczbę dominowania słabo spójnego.
-
Weakly convex domination subdivision number of a graph
PublicationA set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...
-
Weakly connected domination subdivision numbers
PublicationLiczba podziału krawędzi dla dominowania słabo spójnego to najmniejsza liczba krawędzi jaką należy podzielić, aby wzrosła liczba dominowania słabo wypukłego. W pracy przedstawione są własności liczby podziału krawędzi dla dominowania słabo spójnego dla różnych grafów.
-
Weakly connected domination critical graphs
PublicationPraca dotyczy niektórych klas grafów krytycznych ze względu na liczbę dominowania słabo spójnego.
-
Strong weakly connected domination subdivisible graphs
PublicationArtykuł dotyczy wpływu podziału krawędzi na liczbę dominowania słabo spójnego. Charakteryzujemy grafy dla których podział dowolnej krawędzi zmienia liczbę dominowania słabo spójnego oraz grafy dla których podział dowolnych dwóch krawędzi powoduje zmianę liczby dominowania słabo spójnego.
-
The outer-connected domination number of a graph
PublicationW pracy została zdefiniowana liczba dominowania zewnętrznie spójnego i przedstawiono jej podstawowe własności.
-
On the doubly connected domination number of a graph
PublicationW pracy została zdefiniowana liczba dominowania podwójnie spójnego i przedstawiono jej podstawowe własności.
-
Nordhaus-Gaddum results for the weakly convex domination number of a graph
PublicationArtykuł dotyczy ograniczenia z góry i z dołu (ze względu na ilość wierzchołków) sumy i iloczynu liczb dominowania wypukłego grafu i jego dopełnienia.
-
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublicationA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...
-
Weakly convex and convex domination numbers of some products of graphs
PublicationIf $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number}...
-
On domination multisubdivision number of unicyclic graphs
PublicationThe paper continues the interesting study of the domination subdivision number and the domination multisubdivision number. On the basis of the constructive characterization of the trees with the domination subdivision number equal to 3 given in [H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009), 622–628], we constructively characterize all connected unicyclic graphs with...
-
TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH
PublicationThe domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msd_t (G) of a graph G and we show that for any connected graph G of order at least two, msd_t (G) ≤ 3. We show that for trees the total domination...
-
Unicyclic graphs with equal total and total outer-connected domination numbers
PublicationLet G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...
-
Independent Domination Subdivision in Graphs
PublicationA set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...
-
Total Domination Versus Domination in Cubic Graphs
PublicationA dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...
-
Interpolation properties of domination parameters of a graph
PublicationAn integer-valued graph function π is an interpolating function if a set π(T(G))={π(T): T∈TT(G)} consists of consecutive integers, where TT(G) is the set of all spanning trees of a connected graph G. We consider the interpolation properties of domination related parameters.
-
Total domination in versus paired-domination in regular graphs
PublicationA subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...
-
On trees with double domination number equal to 2-domination number plus one
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...
-
On trees with double domination number equal to total domination number plus one
PublicationA total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...
-
Isolation Number versus Domination Number of Trees
PublicationIf G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....
-
On trees with double domination number equal to 2-outer-independent domination number plus one
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...
-
Restrained differential of a graph
PublicationGiven a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G) :\, uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\cup_{v\in S}N(v)\right)\setminus S$, while the \emph{restrained external neighbourhood} of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e\neq \varnothing\}$. The restrained differential of a graph $G$ is...
-
On trees attaining an upper bound on the total domination number
PublicationA total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...
-
The convex domination subdivision number of a graph
PublicationLet G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...
-
Complexity Issues on of Secondary Domination Number
PublicationIn this paper we study the computational complexity issues of the problem of secondary domination (known also as (1, 2)-domination) in several graph classes. We also study the computational complexity of the problem of determining whether the domination and secondary domination numbers are equal. In particular, we study the influence of triangles and vertices of degree 1 on these numbers. Also, an optimal algorithm for finding...
-
Coronas and Domination Subdivision Number of a Graph
PublicationIn this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.
-
Total outer-connected domination in trees
PublicationW pracy przedstawiono dolne ograniczenie na liczbę dominowania totalnego zewnętrznie spójnego w grafach oraz scharakteryzowano wszystkie drzewa osiągające to ograniczenie.
-
On the super domination number of lexicographic product graphs
PublicationThe neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...
-
Influence of edge subdivision on the convex domination number
PublicationWe study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
-
Bounds on the vertex-edge domination number of a tree
PublicationA vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...
-
On trees with equal domination and total outer-independent domination numbers
PublicationFor a graph G=(V,E), a subset D subseteq V(G) is a dominating set if every vertex of V(G)D has a neighbor in D, while it is a total outer-independent dominating set if every vertex of G has a neighbor in D, and the set V(G)D is independent. The domination (total outer-independent domination, respectively) number of G is the minimum cardinality of a dominating (total outer-independent dominating, respectively) set of G. We characterize...
-
Total outer-connected domination numbers of trees
PublicationNiech G=(V,E) będzie grafem bez wierzchołków izolowanych. Zbiór wierzchołków D nazywamy zbiorem dominującym totalnym zewnętrznie spójnym jeżli każdy wierzchołek grafu ma sąsiada w D oraz podgraf indukowany przez V-D jest grafem spójnym. Moc najmniejszego zbioru D o takich własnościach nazywamy liczbą dominowania totalnego zewnątrznie spójnego. Praca m.in. zawiera dolne ograniczenie na liczbę dominowania totalnego zewnętrznie spójnego...
-
On trees with equal 2-domination and 2-outer-independent domination numbers
PublicationFor a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...
-
An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree
PublicationA 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...
-
Block graphs with large paired domination multisubdivision number
PublicationThe paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4.
-
Paired domination versus domination and packing number in graphs
PublicationGiven a graph G = (V(G), E(G)), the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are denoted by γ (G), γpr(G), and γt(G), respectively. For a positive integer k, a k-packing in G is a set S ⊆ V(G) such that for every pair of distinct vertices u and v in S, the distance between u and v is at least k + 1. The k-packing number is the order of a largest kpacking and...
-
A lower bound on the total outer-independent domination number of a tree
PublicationA total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...
-
On the ratio between 2-domination and total outer-independent domination numbers of trees
PublicationA 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...
-
An upper bound on the 2-outer-independent domination number of a tree
PublicationA 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...
-
An upper bound on the total outer-independent domination number of a tree
PublicationA total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...
-
A lower bound on the double outer-independent domination number of a tree
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...
-
An upper bound for the double outer-independent domination number of a tree
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...
-
All graphs with paired-domination number two less than their order
PublicationLet G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...
-
Weakly convex and convex domination numbers.
PublicationW artykule przedstawione są nowo zdefiniowane liczby dominowania wypukłego i słabo wypukłego oraz ich porównanie z innymi liczbami dominowania. W szczególności, rozważana jest równość liczby dominowania spójnego i wypukłego dla grafów kubicznych.