Filters
total: 80
Search results for: coefficient of friction
-
Effects of surface texturing and kind of lubricant on the coefficient of friction at ambient and elevated temperatures
Publication -
Experimental Study of the Rolling Friction Coefficient in Highly Loaded Supports of Rotary Kilns
Publication -
Friction and Lubrication of Large Tilting-Pad Thrust Bearings
PublicationFluid film bearings have been extensively used in the industry because of their unbeatable durability and extremely low friction coefficient, despite a very low coefficient of friction dissipation of energy being noticeable, especially in large bearings. Lubricating systems of large tilting pad thrust bearings utilized in large, vertical shaft hydrogenerators are presented in this paper. A large amount of heat is generated due...
-
Theoretical study of thermofrictional oscillations due to negative friction-temperature characteristic
PublicationAnalytical study on oscillations of a body on a moving counterbody has been done by assuming imperfect frictional thermal contact and friction that decreases with contact temperature. It has been shown that stick-slip oscillation occurs due to decrease of friction coefficient when the body moves in the opposite direction to the counterbody. Dynamical characteristics, such as conditions for stable sliding and limit cycles, have...
-
THE DETERMINATION OF ABRASION RESISTANCE OF SELECTED BIOMATERIALS FOR THE FRICTION PAIRS IN THE HIP JOINT ENDOPROSTHESIS
PublicationThe key requirement for the modern endoprosthesis is high durability of the friction components, which results in long and trouble-free operation in the human body. The durability of currently used endoprosthesis is often limited by tribological wear processes of friction components (e.g. between the head and the acetabular component in a hip joint endoprosthesis) [8, 19, 23, 24]. In order to compare the tribological wear, tribological...
-
Analytical Study of Sliding Instability due to Velocity- and Temperature-Dependent Friction
PublicationThe instability of sliding causes deterioration of performance characteristics of tribosystems and is undesired. To predict its occurrence, the motion of a body of a one-degree-of-freedom system with friction is investigated about the steady sliding equilibrium position. The motion equation is formulated with the friction coefficient dependent on the sliding velocity and contact temperature changing due to transient heat conduction...
-
Friction-Induced Oscillations of a Non-Asbestos Organic Pin Sliding on a Steel Disc
PublicationFriction-induced oscillations result in deterioration of performance of disc brakes and are generally undesired. We conduct experimental study of friction-induced oscillations in a non-asbestos organic material / steel pair used in disc brakes of motor vehicles. The tests are done by use of a pin-on-disc machine which has the pin sample supported on a deformable beam. The adjustable friction parameters are the disc velocity, contact...
-
Analytical solution of non-stationary heat conduction problem for two sliding layers with time-dependent friction conditions
PublicationIn this article we conduct an overview of various types of thermal contact conditions at the sliding interface. We formulate a problem of non-stationary heat conduction in two sliding layers with generalized thermal contact conditions allowing for dependence of the heat-generation coefficient and contact heat transfer coefficient on time. We then derive an analytical solution of the problem by constructing a special coordinate...
-
Torque capacity of multidisc wet clutch with reference to friction occurrence on its spline connections
PublicationIn this article developed mathematical model that includes friction occurrence on spline connections is presented. The work also contains results of experimental research on torque capacity of multidisc wet clutch. These results are expressed as a function of contact pressure for different number of friction surfaces. Due to increased interest in research concerning multidisc wet clutches it is essential to determine impact of...
-
The Impact Of The Selected Parameters Of Fdm Manufacturing Technology On Tribological Performance Of Abs–Steel Pair Under Dry Friction
PublicationThe paper presents the result of tribological test of ABS and steel samples sliding under dry friction. Polymeric samples were manufactured of ABS material using FDM technology. Testing was carried out in unidirectional sliding in a ring-on-flat contact in a PT-3 tribometer. The scope of tested parameters included volumetric and mass wear, the friction coefficient, and polymeric specimen temperature. Polymeric specimens used in...
-
Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction
PublicationCementless implants have become widely used for total hip replacement surgery. The long-term stability of these implants is achieved by bone growing around and into the rough surface of the implant, a process called osseointegration. However, debonding of the bone–implant interface can still occur due to aseptic implant loosening and insufficient osseointegration, which may have dramatic consequences. The aim of this work is to...
-
Tribological Properties of Thermoplastic Materials Formed by 3D Printing by FDM Process
PublicationThe dataset entitled 3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4 contains: the time base (expressed in seconds and minutes), the friction torque for sliding friction, rotational velocity of the counter – specimen (velocity of sliding), friction coefficient, load in the friction contact...
-
SiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B37/#A35
Open Research DataWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 3 min.Secimen...
-
TiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A39/#B41
Open Research DataWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 3 min.Secimen...
-
SiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A35/#B37
Open Research DataWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 3 min.Secimen...
-
Tribo-Environment Dependent Chemical Modification of Sliding Interfaces in Ultrananocrystalline Diamond Nanowall Film: A Correlation with Friction and Wear
PublicationTribological properties of ultrananocrystalline diamond nanowall (UNCD NW) films were investigated quantitatively in three different and controlled tribo-environmental conditions, proposing the passivation and graphitization mechanisms. However, these mechanisms are rather complicated and possibly can be understood in well-controlled tribological conditions. It was shown that the friction and wear of these films were high in highPage 1...
-
TiN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B48/#A45
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 12 min....
-
TiC coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B41/#A39
Open Research DataWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 9 min....
-
CrN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A23/#B22
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 12 min. The...
-
TiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B39/#A41
Open Research DataWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
SiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B34/#A33
Open Research DataWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
TiN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A45/#B48
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 12 min....
-
TiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A41/#B39
Open Research DataWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The...
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A25/#B21
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 9 min....
-
CrN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B22/#A23
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 6 min. The test...
-
SiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A33/#B34
Open Research DataWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B21/#A21
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 25 min....
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#A47
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 20 min. The test...
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#B45
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 90 min. The test...
-
Cattaneo–Christov heat flow model for copper–water nanofluid heat transfer under Marangoni convection and slip conditions
PublicationThis report is devoted to the study of the flow of MHD nanofluids through a vertical porous plate with a temperature-dependent surface tension using the Cattaneo–Christov heat flow model. The energy equation was formulated using the Cattaneo–Christov heat flux model instead of Fourier’s law of heat conduction. The Tiwari–Das model was used to take into account the concentration of nanoparticles when constructing the momentum equation....
-
INVESTIGATION OF JOURNAL SLIDE BEARINGS UNDER THE ANGLE OF THEIR FUNCTIONING
PublicationPaper presents the structure and principle of operation of a stand for measurements of influence of the lubrication method and process on functioning of journal slide bearings in their various technical states. Measurements performed on the stand make it possible to take advantage of the new method of evaluating the influence of physical and chemical properties of lubricating oil on the coefficient of friction in the mixed friction...
-
Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy–Weisbach equation and the issue of friction factor
PublicationIn this article, we consider the modelling of stationary incompressible and isothermal one-dimensional fluid flow through a long pipeline. The approximation of the average pressure in the developed model by the arithmetic mean of inlet and outlet pressures leads to the known empirical Darcy–Weisbach equation. Most importantly, we also present another improved approach that is more accurate because the average pressure is estimated...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.