Filters
total: 33
Search results for: metamaterials
-
Design of metamaterials: Preface
PublicationThis special issue “Design of metamaterials” collects several papers that have presented theoretical, numerical, and experimental studies of metamaterials.
-
EPJ Applied Metamaterials
Journals -
Enriched buckling for beam-lattice metamaterials
PublicationWe discuss two examples of beam-lattice metamaterials which show attractive mechanical properties concerning their enriched buckling. The first one considers pantographic beams and the nonlinear solution is traced out numerically on the base of a Hencky’s model and an algorithm based on Riks’ arc-length scheme. The second one concerns a beam-lattice with sliders and the nonlinear solution is discussed in analytic way and, finally,...
-
Computer modeling and testing of structural metamaterials
Publication -
Mechanical metamaterials manufactured by increasing technology
Publication -
Overview of Approaches for Compensating Inherent Metamaterials Losses
PublicationMetamaterials are synthetic composite structures with extraordinary electromagnetic properties not readily accessible in ordinary materials. These media attracted massive attention due to their exotic characteristics. However, several issues have been encountered, such as the narrow bandwidth and inherent losses that restrict the spectrum and the variety of their applications. The losses have become the principal limiting factor...
-
Advanced Electromagnetic Metamaterials for Temperature Sensing Applications
Publication -
Test Stand for Metamaterials Dynamic Properties Examination
Publication -
Recent and Emerging Applications of Graphene-based metamaterials in Electromagnetics
PublicationSurface Plasmon Polaritons (SPPs) operating in mid-infrared up to terahertz (THz) frequencies have been traditionally manufactured on expensive metals such as gold, silver, etc. However, such metals have poor surface confinement that limits the optical applications of SPPs. The invention of graphene is a breakthrough in plasmon-based devices in terms of design, fabrication and applications, thanks to its plasmonic wave distribution,...
-
Pantographic metamaterials: an example of mathematically driven design and of its technological challenges
PublicationIn this paper, we account for the research efforts that have been started, for some among us, already since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first stage of these efforts, as it often happens, the research was based on the results of mathematical investigations. The problem to be solved was stated as follows: determine the material (micro)structure governed by those...
-
Optimization of multilayer rail substrate under moving load, using metamaterials.
Publication -
Overview of Metamaterials-Integrated Antennas for Beam Manipulation Applications: The Two Decades of Progress
PublicationMetamaterials (MMs) are synthetic composite structures with superior properties not found in naturally occurring materials. MMs have gained massive attention over the last two decades because of their extraordinary properties, such as negative permittivity and permeability. These materials enable many applications in communication subsystems, especially in the field of antenna design, to enhance gain, bandwidth, and efficiency,...
-
Luminescent and Scintillation Properties of CeAlO3 Crystals and Phase-Separated CeAlO3/CeAl11O18 Metamaterials
Publication -
Overview of planar antenna loading metamaterials for gain performance enhancement: the two decades of progress
PublicationMetamaterials (MTMs) are artificially engineered materials with unique electromagnetic properties not occurring in natural materials. MTMs have gained considerable attention owing to their exotic electromagnetic characteristics such as negative permittivity and permeability, thereby a negative refraction index. These extraordinary properties enable many practical applications such as super-lenses, and cloaking technology, and are...
-
Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications
PublicationThis paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a...
-
On rotary inertia of microstuctured beams and variations thereof
PublicationWe discuss the classic rotary inertia notion and extend it for microstructured beams introducing new microinertia parameters as an additional dynamic response to microstructure changes. Slender structures made of beam- or platelet-lattice metamaterials may exhibit not only large translations and rotations but also general deformations of inner structure. Here we considered a few examples of beam-like structures and derive their...
-
Metamaterial-Based Series-Fed Antenna with High Gain and Wideband Performance for Millimeter Wave Spectrum Applications
PublicationThis paper presents a high-gain, wideband series-fed antenna designed for 5G millimeter-wave (MMW) applications. The structure employs a substrate-integrated waveguide (SIW)-based power splitter and metamaterials (MMs). The power divider functions effectively at 27.5 GHz, exhibiting an impedance bandwidth from 26.9–28.6 GHz. The series-fed dipole is assembled on the SIW-based power splitter, incorporating four dipoles with varying...
-
Nonlinear strain gradient and micromorphic one-dimensional elastic continua: Comparison through strong ellipticity conditions
PublicationWe discuss the strong ellipticity (SE) conditions for strain gradient and micromorphic continua considering them as an enhancement of a simple nonlinearly elastic material called in the following primary material. Recently both models are widely used for description of material behavior of beam-lattice metamaterials which may possess various types of material instabilities. We analyze how a possible loss of SE results in the behavior...
-
Local material symmetry group for first- and second-order strain gradient fluids
PublicationUsing an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients....
-
Metamaterial-Based Sub-Microwave Electromagnetic Field Energy Harvesting System
PublicationThis paper presents the comprehensive analysis of the sub-microwave, radio frequency band resonant metastructures’ electromagnetic properties with a particular emphasis on the possibility of their application in energy harvesting systems. Selected structures based on representative topologies of metamaterials have been implemented in the simulation environment. The models have been analyzed and their substitute average electromagnetic...
-
Design and Optimization of Metamaterial-Based 5G Millimeter Wave Antenna for Gain Enhancement
PublicationIn this brief, a low profile, broadband, high-gain antenna array based on optimized metamaterials (MMs) with dual-beam radiation is reported for 5G millimeters wave (mm-wave) applications. The design is a simple bow tie operating at a 5G band of 28 GHz. It consists of two bow ties with substrate integrated waveguide (SIW)-based power splitter. A broad impedance bandwidth of 26.3−29.8 GHz is obtained by appropriately combining the...
-
Design and Optimization of Metamaterial-Based Dual-Band 28/38 GHz 5G MIMO Antenna with Modified Ground for Isolation and Bandwidth Improvement
PublicationThis letter presents a high-isolation dual-band multiple-input multiple-output (MIMO) antenna based on the ground plane modification and optimized metamaterials (MMs) for 5G millimeter-wave applications. The antenna is a monopole providing a dual-band response at 5G 28/38 bands with a small physical size (4.8 × 2.9 × 0.762 mm3, excluding the feeding line). The MIMO consists of two symmetric radiating elements arranged adjacently...
-
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
PublicationTo obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Mechanics of Micro- and Nano-Size Materials and Structures
PublicationNanotechnology knowledge is always looking to expand its boundaries to achieve the mostsignificant benefit to human life and meet the growing needs of today. In this case, we can refer tomicro- and nanosensors in micro/nano-electromechanical systems (MEMS/NEMS). These electricaldevices can detect minimal physical stimuli up to one nanometer in size. Today, micro/nano-sensordevices are widely used in the...
-
High gain/bandwidth off‑chip antenna loaded with metamaterial unit‑cell impedance matching circuit for sub‑terahertz near‑field electronic systems
PublicationAn innovative off-chip antenna (OCA) is presented that exhibits high gain and efficiency performance at the terahertz (THz) band and has a wide operational bandwidth. The proposed OCA is implemented on stacked silicon layers and consists of an open circuit meandering line. It is shown that by loading the antenna with an array of subwavelength circular dielectric slots and terminating it with a metamaterial unit cell, its impedance...
-
Projecting procedure for meta-material fiber
PublicationWe would like to show new way of derivation evolution equation for short pulses in dielectric waveguide including one model of metamaterial waveguide. This derivation model rely on projecting to the orthogonal basis. In our case to orthogonal basis for cylindrical waveguide.
-
Terahertz Dual-Band Metamaterial Biosensor for Cervical-Cancer Diagnostics
PublicationThis study highlights the potential of employing terahertz metamaterial structures as dual-band biosensors for the early detection of cancerous biological tissue. The fundamental principle leveraged here is the alteration of the effective dielectric constant of biological tissue by cancerous cells. The change in the dielectric constant, in turn, induces a shift in the resonance frequency of the metamaterial sensor. One notable...
-
Design and Experimental Validation of a Metamaterial-Based Sensor for Microwave Imaging in Breast, Lung, and Brain Cancer Detection
PublicationThis study proposes an innovative geometry of a microstrip sensor for high-resolution microwave imaging (MWI). The main intended application of the sensor is early detection of breast, lung, and brain cancer. The proposed design consists of a microstrip patch antenna fed by a coplanar waveguide with a metamaterial layer-based lens implemented on the back side, and an artificial magnetic conductor (AMC) realized on as a separate...
-
Millimeter Wave Negative Refractive Index Metamaterial Antenna Array
PublicationIn this paper, a novel negative refractive index metamaterial (NIM) is developed and characterized. The proposed metamaterial exhibits negative effective permittivity (εeffe) and negative effective permeability (µeffe) at millimeter wave frequency of 28GHz. This attractive feature is utilized to enhance the gain of a microstrip patch antenna (MPA). Two thin layers of 5 5 subwavelength unit cell array of NIM are placed above a...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Continuum models for pantographic blocks with second gradient energies which are incomplete
PublicationWe postulate a deformation energy for describing the mechanical behavior of so called pantographic blocks, that is bodies constituted by stacking of layers of pantographic sheets. We remark that the pantographic effect is limited in the plane of pantographic sheets and therefore only the second derivatives of transverse displacements along the pantographic fibers appear in the chosen deformation energy. We use this novel energy...
-
Paweł Bielski mgr inż.
People