Filters
total: 27
filtered: 24
-
Catalog
Chosen catalog filters
Search results for: PDE4
-
The influence of food phytochemicals on cyclic phosphodiesterase 4 (PDE4) activity
PublicationCyclic phosphodiesterase 4 (PDE4) belongs to family of cyclic phosphodiesterases, which are expressed predominantly in inflammatory cells, airway smooth muscles, cardiovascular tissues and brain. Inhibitors of this family of enzymes found medicinal applications as antidepressants, antiinflamatory drugs (mainly in airway diseases) or antiasthmatics (Ibudilast). PDE4 inhibitors are also being tested for preventing the development...
-
Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
PublicationWe consider the elliptic partial differential equation in the divergence form $$-\div(\nabla G(\nabla u(x))) t + F_u (x, u(x)) = 0,$$ where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{loc}\cap W^{1,\infty}_{loc}$.
-
PdCl2-catalyzed synthesis of a new class of isocoumarin derivatives containing aminosulfonyl / aminocarboxamide moiety: First identification of a isocoumarin based PDE4 inhibitor
Publication -
Synthesis of 11,12-dihydro benzo[c]phenanthridines via a Pd-catalyzed unusual construction of isocoumarin ring/FeCl3-mediated intramolecular arene-allyl cyclization: First identification of a benzo[c]phenanthridine based PDE4 inhibitor
Publication -
Novel molecules containing structural features of NSAIDs and 1,2,3-triazole ring: Design, synthesis and evaluation as potential cytotoxic agents
PublicationFor the first time the template containing structural features of more than one NSAIDs and the 1,2,3-triazole ring was explored for the identification of potential cytotoxic agents. These new and complex molecules were predicted to be effective inhibitors of PDE4B by molecular modelling studies in silico. The multi-step synthesis of these compounds were carried out starting from the well-known drug nimesulide and involved the use...
-
A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field
PublicationThe use of hybrid nanoparticles to improve thermal processes is a key method that has implications for a variety of interventions utilized in many sectors. This paper aimed to look into the impacts of ternary nanoparticles on hyperbolic tangent materials to establish their thermal characteristics. Flow describing equations have been explored in the presence of heat production, non-Fourier heat flux, and an induced magnetic field....
-
Asymptotic Expansion Method with Respect to Small Parameter for Ternary Diffusion Models
PublicationTernary diffusion models lead to strongly coupled systems of PDEs. We choose the smallest diffusion coefficient as a small parameter in a power series expansion whose components fulfill relatively simple equations. Although this series is divergent, one can use its finite sums to derive feasible numerical approximations, e.g. finite difference methods (FDMs).
-
Rothe’s method for physiologically structured models with diffusion
PublicationWe consider structured population models with diffusion and dynamic boundary conditions. The respective approximation, called Rothe’s method, produces positive and exponentially bounded solutions. Its solutions converge to the exact solution of the original PDE.
-
On solvability of initial boundary-value problems of micropolar elastic shells with rigid inclusions
PublicationThe problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated...
-
Alternative method for the synthesis of imidazo[5,1-f][1,2,4]triazin-4(3H)-one—a substrate for the preparation of phosphodiesterase (5) inhibitors
PublicationImidazo[5,1-f][1,2,4]triazin-4(3H)-ones, as isosteres of purine, are of interest for pharmaceutical research as potential substrates for the synthesis of cGMP-PDE5 inhibitors. We present a novel, alternative method for the synthesis of imidazotriazinones, that differs from the previously reported ones with respect to the method of construction of the triazinone ring in the molecule. The key step in our approach is condensation...
-
Module structure in Conley theory with some applications
PublicationA multiplicative structure in the cohomological versjon of Conley index is described . In the case of equivariant flows we apply the normalization procedure known from equivariant degree theory and we propose a new continuation invariant. The theory is then applied to obtain a mountain pass type theorem. Another application is a result on multiple bifurcations for some elliptic PDE.
-
Significant Production of Thermal Energy in Partially Ionized Hyperbolic Tangent Material Based on Ternary Hybrid Nanomaterials
PublicationNanoparticles are frequently used to enhance the thermal performance of numerous materials. This study has many practical applications for activities that have to minimize losses of energy due to several impacts. This study investigates the inclusion of ternary hybrid nanoparticles in a partially ionized hyperbolic tangent liquid passed over a stretched melting surface. The fluid motion equation is presented by considering the...
-
RANS-based design optimization of dual-rotor wind turbines
PublicationPurpose An improvement in the energy efficiency of wind turbines can be achieved using dual rotors. Because of complex flow physics, the design of dual-rotor wind turbines (DRWTs) requires repetitive evaluations of computationally expensive partial differential equation (PDE) simulation models. Approaches for solving design optimization of DRWTs constrained by PDE simulations are investigated. The purpose of this study is to determine...
-
Activation Energy and Inclination Magnetic Dipole Influences on Carreau Nanofluid Flowing via Cylindrical Channel with an Infinite Shearing Rate
PublicationThe infinite shear viscosity model of Carreau fluid characterizes the attitude of fluid flow at a very high/very low shear rate. This model has the capacity for interpretation of fluid at both extreme levels, and an inclined magnetic dipole in fluid mechanics has its valuable applications such as magnetic drug engineering, cold treatments to destroy tumors, drug targeting, bio preservation, cryosurgery, astrophysics, reaction kinetics,...
-
Straightened characteristics of McKendrick-von Foerster equation
PublicationWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
TRAVELLING WAVES FOR LOW–GRADE GLIOMA GROWTH AND RESPONSE TO A CHEMOTHERAPY MODEL
PublicationLow-grade gliomas (LGGs) are primary brain tumours which evolve very slowly in time, but inevitably cause patient death. In this paper, we consider a PDE version of the previously proposed ODE model that describes the changes in the densities of functionally alive LGGs cells and cells that are irreversibly damaged by chemotherapy treatment. Besides the basic mathematical properties of the model, we study the possibility of the...
-
Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects
PublicationThis article models a system of partial differential equations (PDEs) for the thermal and solute characteristics under gradients (concentration and temperature) in the magnetohydrodynamic flow of Casson liquid in a Darcy porous medium. The modelled problems are highly non-linear with convective boundary conditions. These problems are solved numerically with a finite element approach under a tolerance of 10−8. A numerical algorithm...
-
Simulation of hybridized nanofluids flowing and heat transfer enhancement via 3-D vertical heated plate using finite element technique
PublicationThe present study probed the creation of heat energy and concentrating into Newtonian liquids across vertical 3D-heated plates. The role of the Soret and Dufour theories in concentrating and energy formulas is discussed. The role of hybrid nanoparticles is introduced to illustrate particle efciency in terms of solute and thermal energy. It is removed a viscous dissipation process and a changing magnetic feld. The proposed approach...
-
Rheology of Variable Viscosity‐Based Mixed Convective Inclined Magnetized Cross Nanofluid with Varying Thermal Conductivity
PublicationCross nanofluid possesses an extraordinary quality among the various fluidic models to explore the key characteristics of flowing fluid during very low and very high shear rates and its viscosity models depend upon shear rate. The current study establishes the numerical treatment regarding variable viscosity‐based mixed convective inclined magnetized Cross nanofluid with var‐ ying thermal conductivities over the moving permeable...
-
Impacts of Using Exhaust Gas Recirculation and Various Amount of Dimethyl Ether Premixed Ratios on Combustion and Emissions on a Dual-Fuel Compression Ignition Engine
PublicationIn the presented research, the authors dealt with the specific properties of the combustion process of dimethyl ether (DME) in a combustion car (Volkswagen Golf IV) engine AJM 1.9 TDI PDE made by Volkswagen factory. Dimethyl ether is an alternative fuel produced most often from natural gas, which can be used in compression ignition engines as a single fuel or co-burned with diesel oil. This work describes the impacts of using exhaust...
-
Electromagnetic Control and Dynamics of Generalized Burgers’ Nanoliquid Flow Containing Motile Microorganisms with Cattaneo–Christov Relations: Galerkin Finite Element Mechanism
PublicationIn our research work, we have developed a model describing the characteristics of the bio-convection and moving microorganisms in the flows of a magnetized generalized Burgers’ nanoliquid with Fourier’s and Fick’s laws in a stretchable sheet. Considerations have been made to Cattaneo–Christov mass and heat diffusion theory. According to the Cattaneo–Christov relation, the Buongiorno phenomenon for the motion of a nanoliquid in...
-
Thermal cooling process by nanofluid flowing near stagnating point of expanding surface under induced magnetism force: A computational case study
PublicationThis paper is dedicated to the exam of entropy age and research of the effect of mixing nanosolid additives over an extending sheet. In this review, Newtonian nanofluid version turned into researched at the actuated appealing field, heat radiation and variable heat conductivity results. With becoming modifications, the proven PDEs are moved into popular differential situations and paintings mathematically making use of a specific...
-
Cattaneo–Christov heat flow model for copper–water nanofluid heat transfer under Marangoni convection and slip conditions
PublicationThis report is devoted to the study of the flow of MHD nanofluids through a vertical porous plate with a temperature-dependent surface tension using the Cattaneo–Christov heat flow model. The energy equation was formulated using the Cattaneo–Christov heat flux model instead of Fourier’s law of heat conduction. The Tiwari–Das model was used to take into account the concentration of nanoparticles when constructing the momentum equation....
-
Improved finite element method for flow, heat and solute transport of Prandtl liquid via heated plate
PublicationIn the current study, a vertical, 3D-heated plate is used to replicate the generation of heat energy and concentration into Prandtl liquid. We discuss how Dufour and Soret theories relate to the equations for concentration and energy. In order to see how efectively particles, interact with heat and a solvent, hybrid nanoparticles are used. It does away with the phenomena of viscous dissipation and changing magnetic felds. The motivation...