Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters - Publikacja - MOST Wiedzy

Wyszukiwarka

Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters

Abstrakt

In this paper, the fracture behavior and fatigue crack growth rate of the 2024-T351 aluminum alloy has been investigated. At first, the 2024-T351 aluminum alloys have been welded using friction stir welding procedure and the fracture toughness and fatigue crack growth rate of the CT specimens have been studied experimentally based on ASTM standards. After that, in order to predict fatigue crack growth rate and fracture toughness, artificial neural network is used. To obtain the best neuron number in the hidden layer of the artificial neural network, different neuron numbers are tested and the best network based on the performance is selected. Then the fitting method is applied and the fitted surfaces that illustrate the behavior of welding are shown and the results of artificial neural network and fitting method are compared. Also, multi-objective optimization algorithm is used to obtain the best welding parameters and finally sensitivity analysis is applied to measure the effect of rotational and traverse speeds on the fracture toughness and fatigue crack growth rate.

Cytowania

  • 2 6

    CrossRef

  • 0

    Web of Science

  • 3 2

    Scopus

Autorzy (6)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
INTERNATIONAL JOURNAL OF FATIGUE nr 160,
ISSN: 0142-1123
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Masoudi Nejad R., Sina N., Ghahremani Moghadam D., Branco R., Macek W., Berto F.: Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters// INTERNATIONAL JOURNAL OF FATIGUE -Vol. 160, (2022), s.106840-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ijfatigue.2022.106840
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 108 razy

Publikacje, które mogą cię zainteresować

Meta Tagi