Biomechanical testing of bioactive bone cements – a comparison of the impact of modifiers: antibiotics and nanometals
Abstrakt
Apart from its bone filler and fracture stabilizing function, bone cement can be used as a carrier of bioactive substances, and such modified bone cement can protect the implant against microorganisms, treat local infections and combat bacteria introduced during the surgical procedure. In this paper, the effects of modifying antibiotics and nanosilver on the biomechanical properties of bone cement were examined. The following tests were carried out: curing time, wettability, microhardness, porosity, microstructure and mechanical tests. Additionally, preliminary tests on bactericidal properties in the form of bacterial growth inhibition zones were conducted. No negative impact of bioactive modifications on cement properties was observed, except for bending strength in bone cement with antibiotics. Unmodified bone cement and nanosilver-loaded cement fulfilled all of the requirements specified in the standards and assumptions regarding their biofunctionality. Antibiotic-loaded cement provided a greater range of bioactivity. Attention should be paid to the potential effects of nanosilver as regards the lack of bacterial resistance, prevention and destruction of biofilm structure and length of bioactivity. Bone cement containing nanometals can serve as an alternative to the bioactive bone cements that are currently in use.
Cytowania
-
1 4
CrossRef
-
1 2
Web of Science
-
1 4
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
-
otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuł w czasopiśmie wyróżnionym w JCR
- Opublikowano w:
-
POLYMER TESTING
nr 70,
strony 234 - 243,
ISSN: 0142-9418 - Język:
- angielski
- Rok wydania:
- 2018
- Opis bibliograficzny:
- Wekwejt M., Moritz N., Świeczko-Żurek B., Pałubicka A.: Biomechanical testing of bioactive bone cements – a comparison of the impact of modifiers: antibiotics and nanometals// POLYMER TESTING. -Vol. 70, (2018), s.234-243
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.polymertesting.2018.07.014
- Bibliografia: test
-
- J.V. Rau, V.M. Wu, V. Graziani, I.V. Fadeeva, A.S. Fomin, et. al., The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria, Mater. Sci. Eng. C, 79 (2017) 270-279. https://doi.org/10.1016/j.msec.2017.05.052 otwiera się w nowej karcie
- T. Yu, S. Zeng, X. Liu, H. Shi, J. Ye, et. al., Application of Sr-doped octacalcium phosphate as a novel Sr carrier in the α-tricalcium phosphate bone cement, Ceram. Int., 43 (15) (2017) 12579-12587. https://doi.org/10.1016/j.ceramint.2017.06.135 otwiera się w nowej karcie
- K.E. Tanner, J.S. Wang, F. Kjellson, L. Lidgren, Comparison of two methods of fatigue testing bone cement, Acta Biomater., 6 (3) (2010) 943-952. https://doi.org/10.1016/j.actbio.2009.09.009 otwiera się w nowej karcie
- J. Czechowska, A. Zima, D. Siek, A. Ślósarczyk, The importance of chitosan and nano TiHA in cement-type composites on the basis of calcium sulfate, Ceram. Int., 42 (14) (2016) 15559-15567. https://doi.org/10.1016/j.ceramint.2016.07.003 otwiera się w nowej karcie
- F. Amerstorfer, S. Fischerauer, P. Sadoghi, G. Schwantzer, K. Dieter, et. al., Superficial Vancomycin Coating of Bone Cement in Orthopedic Revision Surgery: A Safe Technique to Enhance Local Antibiotic Concentrations, J. Arthroplasty, 32 (5) (2017) 1618-1624. https://doi.org/10.1016/j.arth.2016.11.042 otwiera się w nowej karcie
- Y. A. Thaher, S. Perni, P. Prokopovich, Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material, Adv. Colloid Interface Sci., 249 (2017) 234-247. https://doi.org/10.1016/j.cis.2017.04.017 ACCEPTED MANUSCRIPT otwiera się w nowej karcie
- M. Wekwejt, B. Świeczko-Żurek, M. Szkodo, Requirements, modifications and test methods of bone cement -literature review, European Journal of Medical Technologies, 16 (3) (2017) 1-10. otwiera się w nowej karcie
- D. Siek, A. Ślósarczyk, A. Przekora, A. Belcarz, A. Zima, Evaluation of antibacterial activity and cytocompatibility of α-TCP based bone cements with silver-doped hydroxyapatite and CaCO3, Ceram. Int., 43 (16) (2017) 13997-14007. https://doi.org/10.1016/j.ceramint.2017.07.131 otwiera się w nowej karcie
- K. Goto, J. Tamura, S. Shinzato, S. Fujibayashi, M. Hashimoto, et. al., Bioactive bone cements containing nano-sized titania particles for use as bone substitutes, Biomaterials, 26 (33) (2005) 6495-6505. https://doi.org/10.1016/j.biomaterials.2005.04.044 otwiera się w nowej karcie
- X. Cui, W. Huang, Y. Zhang, C. Huang, Z. Yu, Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model, Mater. Sci. Eng. C, 73 (2017) 585-595. https://doi.org/10.1016/j.msec.2016.12.101 otwiera się w nowej karcie
- M. Miola, A. Bistolfi, M. Valsania, C. Bianco, G. Fucale, et. al., Antibiotic-loaded acrylic Bone cements: An in vitro study on the release mechanism and its efficacy, Mater. Sci. Eng. C, 33 (5) (2013) 3025-3032. https://doi.org/10.1016/j.msec.2013.03.032 otwiera się w nowej karcie
- E. Paz, P. Sanz-Ruiz, J. Abenojar, J. Vaquero-Martin, F. Forroiol, et al., Evaluation of Elution and Mechanical Properties of High-Dose Antibiotic-Loaded Bone Cement: Comparative 'In Vitro' Study of the Influence of Vancomycin and Cefazolin, J. Arthroplasty, 30 (8) (2015) 1423-1429. https://doi.org/10.1016/j.arth.2015.02.040 otwiera się w nowej karcie
- S.C. Shen, W.K. Ng, Y.C. Dong, J. Ng, R.B.H. Tan, Nanostructured material formulated acrylic bone cements with enhanced drug release, Mater. Sci. Eng. C, 58 (2016) 233-241. https://doi.org/10.1016/j.msec.2015.08.011 otwiera się w nowej karcie
- M. Miola, M. Bruno, G. Maina, G. Fucale, G. Lucchetta, et. al. Antibiotic-free composite Bone cements with antibacterial and bioactive properties. A preliminary study, Mater. Sci. Eng. otwiera się w nowej karcie
- C, 43 (2014). https://doi.org/10.1016/j.msec.2014.06.026 otwiera się w nowej karcie
- W. Zhu, F. Liu, J. He, Synthesis of imidazolium-containing mono-methacrylates as polymerizable antibacterial agents for acrylic bone cements, J. Mech. Behav. Biomed. Mater., 74 (2017) 176-182. https://doi.org/10.1016/j.jmbbm.2017.06.003 otwiera się w nowej karcie
- P. Cools, N. De Geyter, E. Vanderleyden, F. Barberis, P. Dubruel, et. al., Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization, Surf. Coatings Technol., 294 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.054 otwiera się w nowej karcie
- A. Schunck, A. Kronz, C. Fischer, G. H. Buchhorn, Release of zirconia nanoparticles at the metal stem-bone cement interface in implant loosening of total hip replacements, Acta Biomater., 31 (2016) 412-424. https://doi.org/10.1016/j.actbio.2015.11.044 otwiera się w nowej karcie
- I. Koh, A. López, A. B. Pinar, B. Helgason, S. J. Ferguson, The effect of water on the mechanical properties of soluble and insoluble ceramic cements, J. Mech. Behav. Biomed. Mater., 51 (2015) 50-60. https://doi.org/10.1016/j.jmbbm.2015.06.030 otwiera się w nowej karcie
- G. Massazza, A. Bistolfi, E. Verné, M. Miola, L. Ravera, et. al., Antibiotics and cements for the prevention of biofilm-associated infections, in book: Biomaterials and Medical Device -Associated Infections. Woodhead Publishing Limited, (2015) 185-197. https://doi.org/10.1533/9780857097224.2.185 otwiera się w nowej karcie
- L. Paiva, T.K.S. Figalgo, L.P. da Costa, L.C. Maia, L. Balan, et. al., Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC), J. Dent., 69 (2018) 102-109. https://doi.org/10.1016/j.jdent.2017.12.003 otwiera się w nowej karcie
- Standard specification for acrylic bone cement: Implants for surgery -ISO 5883 (2002). otwiera się w nowej karcie
- Standard specification for acrylic bone cement -ASTM F451:99a (1999). otwiera się w nowej karcie
- M. Wekwejt, B. Świeczko-Żurek, The creation of an antimicrobial coating on contact lenses by the use of nanocopper, International Journal of new Technology and Research, 3 (9) (2017) 103-107. otwiera się w nowej karcie
- B. Świeczko-Żurek, The influence of biological environment on the appearance of silver coated implants, Adv. Mater. Sci., 12 (2) 45-50. otwiera się w nowej karcie
- I.S. Journal, M. Faculty, Antimicrobal and ostheointegration activity of bone cement contains nanometals, 74 (1) 15-21.
- H. Tan, S. Guo, S. Yang, X. Xu, T. Tang, Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement, Acta Biomater., 8 (6) (2012) 2166 -2174. https://doi.org/10.1016/j.actbio.2012.03.013 otwiera się w nowej karcie
- F.J. Parra-Ruiz, A. Gonzalez-Gomez, M. Fernandez-Gutierrez, J. Parra, J. Garcia-Garcia, et. al., Development of advanced biantibiotic loaded bone cement spacers for arthroplasty associated infections, Int. J. Pharm., 522 (1-2) (2017) 11-20. https://doi.org/10.1016/j.ijpharm.2017.02.066 otwiera się w nowej karcie
- I. Koh, Y. Gombert, C. Persson, H. Engqvist, B. Helgason, et. al., Ceramic cement as a potential stand-alone treatment for bone fractures: An in vitro study of ceramic-bone composites, J. Mech. Behav. Biomed. Mater., 61 (2016) 519-529. https://doi.org/10.1016/j.jmbbm.2016.03.027 otwiera się w nowej karcie
- E. Paz, F. Forriol, J. C. del Real, N. Dunne, Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications, Mater. Sci. Eng. C, 77 (2017) 1003-1011. https://doi.org/10.1016/j.msec.2017.03.269 otwiera się w nowej karcie
- J. Martínez-Moreno, C. Mura, V. Merino, A. Nácher, M. Climente, et. al., Study of the Influence of Bone Cement Type and Mixing Method on the Bioactivity and the Elution Kinetics of Ciprofloxacin, J. Arthroplasty, 30 (7) 1243-1249. otwiera się w nowej karcie
- https://doi.org/10.1016/j.arth.2015.02.016 otwiera się w nowej karcie
- S. Chen, Y. Guo, R. Liu, S. Wu, J. Fang, Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration, Colloids Surfaces B Biointerfaces, 164 (2018) 58-69. https://doi.org/10.1016/j.colsurfb.2018.01.022 otwiera się w nowej karcie
- E. Carbó-Laso, P. Sanz-Ruiz, J.C. del Real-Romero, Y. Ballsteros-Iglesias, E. Paz Jimenez, New method for antibiotic release from bone cement (polymethylmethacrylate) Redefining boundaries, Rev. Española Cirugía Ortopédica y Traumatol, 62 (1) (2018) 86-92. https://doi.org/10.1016/j.recote.2017.12.005 otwiera się w nowej karcie
- M. Ferreira, O. Rzhepishevska, L. Grenho, D. Malheiros, L. Goncalves, et. al., Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms, Int. J. Pharm., 532 (1) 241-248. https://doi.org/10.1016/j.ijpharm.2017.08.089 otwiera się w nowej karcie
- J. Slane, J. Vivanco, W. Rose, H.L. Ploeg, M. Squire, Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles, Mater. Sci. Eng. C, 48 (2015) 188-196. https://doi.org/10.1016/j.msec.2014.11.068 otwiera się w nowej karcie
- P.E. Petrochenko, J. Zheng, B.J. Casey, M.R. Bayati, R.J. Narayan, et. al., Nanosilver PMMA composite coating optimized to provide robust antibacterial efficacy while minimizing human bone marrow stromal cell toxicity, Toxicol. Vitr., 44 (2017) 248-255. otwiera się w nowej karcie
- https://doi.org/10.1016/j.tiv.2017.07.014 otwiera się w nowej karcie
- D.J.F. Moojen, H.C. Vogely, A. Fleer, A.J. Verbout, R.M. Castelein, et. al., No efficacy of silver bone cement in the prevention of methicillin-sensitive Staphylococcal infections in a rabbit contaminated implant bed model, J. Orthop. Res., 27 (8) (2009) 1002-1007. https://doi.org/10.1002/jor.20854 otwiera się w nowej karcie
- W.N. Ayre, S.P. Denyer, S.L. Evans, Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements, J. Mech. Behav. Biomed. Mater., 32 (2014) 76-88. https://doi.org/10.1016/j.jmbbm.2013.12.010 otwiera się w nowej karcie
- A.C. Matos, L.M. Gonçalves, P. Rijo, M.A. Vaz, A.J. Almeida, et. al., A novel modified acrylic bone cement matrix. A step forward on antibiotic delivery against multiresistant bacteria responsible for prosthetic joint infections, Mater. Sci. Eng. C, 38 (2014) 218-226. https://doi.org/10.1016/j.msec.2014.02.002 otwiera się w nowej karcie
- T. Russo, A. Gloria, R. de Santis, U. D'Amora, G. Balato, et. al., Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles, Bioact. Mater., 2 (3) (2017) 156-161. https://doi.org/10.1016/j.bioactmat.2017.05.002 otwiera się w nowej karcie
- P. Prokopovich, R. Leech, C.J. Carmalt, I.P. Parkin, S. Perni, A novel bone cement impregnated with silver-tiopronin nanoparticles: Its antimicrobial, cytotoxic, and mechanical properties, Int. J. Nanomedicine, 8 (2013) 2227-2237. https://doi.org/10.2147/IJN.S42822 otwiera się w nowej karcie
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 279 razy