Bird Identification and Classification Model with DenseNet and StableDiffusion on Limited Hybrid, Natural and Synthetic Datasets - Publikacja - MOST Wiedzy

Wyszukiwarka

Bird Identification and Classification Model with DenseNet and StableDiffusion on Limited Hybrid, Natural and Synthetic Datasets

Abstrakt

As artificial intelligence (AI) advances, many opportunities come into play for creating innovative and valuable applications. However, there are restric tions or high costs that limit the process of gathering data, particularly when it comes to rare bird images. This study explores using DenseNet121 for multi-label image classification in bird detection, with special emphasis given to cases when we have minimal images of endangered bird species. The International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species has identified 44,000 species at risk of becoming extinct, focusing on bird populations facing an unprecedented decrease. Our objective is to develop a system that can detect and identify 10 classes of birds in a condition of limited image availability with a high level of accuracy and efficiency. This study utilizes a sample of 10 Indigenous Aus tralian bird species to evaluate the performance of a classification algorithm on authentic images, computer-generated images, and a combination of the two. The work employs a reliable diffusion technique to generate artificial images by pro viding prompts encompassing each bird species’ vernacular and taxonomic names. The evaluation of the trained models shows that the real image-trained equivalent achieves an accuracy of 92.13%. Hence, we present a method that yielded good results and guided the way for using pre-trained models and fine-tuning with real and synthetic datasets generated with Diffusion models for bird identification (BI). This will help save a lot of time for scientists and researchers interested in process ing, classifying, and identifying rare birds, especially those with less raw data or natural images.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2025
Opis bibliograficzny:
Pokhrel K., Sanin C., Szczerbicki E.: Bird Identification and Classification Model with DenseNet and StableDiffusion on Limited Hybrid, Natural and Synthetic Datasets// / : , 2025,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-981-96-5884-8_28
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 0 razy

Publikacje, które mogą cię zainteresować

Meta Tagi