Corrosion Inhibition of Aluminium Alloy AA6063-T5 by Vanadates: Local Surface Chemical Events Elucidated by Confocal Raman Micro-Spectroscopy - Publikacja - MOST Wiedzy

Wyszukiwarka

Corrosion Inhibition of Aluminium Alloy AA6063-T5 by Vanadates: Local Surface Chemical Events Elucidated by Confocal Raman Micro-Spectroscopy

Abstrakt

Chemical interactions between aqueous vanadium species and aluminium alloy AA6063-T5 were investigated in vanadate-containing NaCl solutions. Confocal Raman and X-ray photoelectron spectroscopy experiments were utilised to gain insight into the mechanism of corrosion inhibition by vanadates. A greenish-grey coloured surface layer, consisting of V+4 and V+5 polymerized species, was seen to form on the alloy surface, especially on top of cathodic micrometre-sized IMPs, whereby suppressing oxygen reduction kinetics. The results suggest a two-step mechanism of corrosion inhibition in which V+5 species are first reduced to V+4 or V+3 species above cathodic IMPs, and then oxidized to mixed-valence V+5/V+4 polymerized compounds.

Cytowania

  • 4 4

    CrossRef

  • 0

    Web of Science

  • 4 4

    Scopus

Autorzy (7)

  • Zdjęcie użytkownika Dr. Dmitry Kharitonov

    Dmitry Kharitonov Dr.

    • Belarusian State Technological University Department of Chemistry, Electrochemical Production Technology and Materials for Electronic Equipment
  • Zdjęcie użytkownika  Jens Sommertune

    Jens Sommertune

    • Research Institutes of Sweden Surface, Process and Formulation
  • Zdjęcie użytkownika  Cem Örnek

    Cem Örnek

    • KTH Royal Institute of Technology Division of Surface and Corrosion Science
  • Zdjęcie użytkownika Prof. Irina Kurilo

    Irina Kurilo Prof.

    • Belarusian State Technological University Department of Physical, Colloid and Analytical Chemistry
  • Zdjęcie użytkownika Prof. Per Claesson

    Per Claesson Prof.

    • KTH Royal Institute of Technology Division of Surface and Corrosion Science
  • Zdjęcie użytkownika  Jinshan Pan

    Jinshan Pan

    • KTH Royal Institute of Technology Division of Surface and Corrosion Science

Cytuj jako

Pełna treść

pobierz publikację
pobrano 153 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
CORROSION SCIENCE nr 148, strony 237 - 250,
ISSN: 0010-938X
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kharitonov, D., Sommertune J., Örnek C., Ryl J., Kurilo I., Claesson P., Pan J.: Corrosion Inhibition of Aluminium Alloy AA6063-T5 by Vanadates: Local Surface Chemical Events Elucidated by Confocal Raman Micro-Spectroscopy// CORROSION SCIENCE. -Vol. 148, (2019), s.237-250
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.corsci.2018.12.011
Bibliografia: test
  1. M. Iannuzzi, G.S. Frankel, Inhibition of aluminum alloy 2024 corrosion by vanadaes: An in situ atomic force microscopy scratching investigation, Corrosion. 63 (2007) 672-688. doi:10.5006/1.3278417. otwiera się w nowej karcie
  2. M. Iannuzzi, J. Kovac, G.S. Frankel, A study of the mechanisms of corrosion inhibition of AA2024-T3 by vanadates using the split cell technique, Electrochim. Acta. 52 (2007) 4032-4042. doi:10.1016/j.electacta.2006.11.019. otwiera się w nowej karcie
  3. K.D. Ralston, R.G. Buchheit, An Initial Exploration of Corrosion Inhibition of AA6061 and AA7075 by Aqueous Vanadates, ECS Electrochem. Lett. 2 (2013) C35-C38. doi:10.1149/2.005309eel. otwiera się w nowej karcie
  4. D.S. Kharitonov, I.I. Kurilo, I.M. Zharskii, Effect of Sodium Vanadate on Corrosion of AD31 Aluminum Alloy in Acid Media, Russ. J. Appl. Chem. 90 (2017) 1089−1097. doi:10.1134/S1070427217070102. otwiera się w nowej karcie
  5. M. Iannuzzi, G.S. Frankel, Mechanisms of corrosion inhibition of AA2024-T3 by vanadates, Corros. Sci. 49 (2007) 2371-2391. doi:10.1016/j.corsci.2006.10.027. otwiera się w nowej karcie
  6. H. Guan, R.G. Buchheit, Corrosion protection of aluminum alloy 2024-T3 by vanadate conversion coatings, Corrosion. 60 (2004) 284-296. doi:10.5006/1.3287733. otwiera się w nowej karcie
  7. D.S. Kharitonov, C. Ornek, P.M. Claesson, J. Sommertune, I.M. Zharskii, I.I. Kurilo, J. Pan, Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates : Microstructure Characterization and Corrosion Analysis, J. Electrochem. Soc. 165 (2018) 116-126. doi:10.1149/2.0341803jes. otwiera się w nowej karcie
  8. K.D. Ralston, T.L. Young, R.G. Buchheit, Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitors, J. Electrochem. Soc. 156 (2009) C135. doi:10.1149/1.3076147. otwiera się w nowej karcie
  9. K.D. Ralston, S. Chrisanti, T.L. Young, R.G. Buchheit, Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species, J. Electrochem. Soc. 155 (2008) C350. doi:10.1149/1.2907772. otwiera się w nowej karcie
  10. D.S. Kharitonov, I.I. Kurilo, A. Wrzesinska, I.M. Zharskii, Corrosion inhibition of AA6063 alloy by vanadates in alkaline media, Mat.-Wiss. u. Werkstofftech. 48 (2017) 646-660. doi:10.1002/mawe.201600752. otwiera się w nowej karcie
  11. A.S. Hamdy, I. Doench, H. Möhwald, Intelligent self-healing corrosion resistant vanadia coating for AA2024, Thin Solid Films. 520 (2011) 1668-1678. doi:10.1016/j.tsf.2011.05.080. otwiera się w nowej karcie
  12. R.L. Cook Jr., S.R. Taylor, Pigment-Derived Inhibitors for Aluminum Alloy 2024-T3, 56 (2000) 321-333. otwiera się w nowej karcie
  13. D.S. Kharitonov, I.I. Kurilo, I.M. Zharsky, Synthesis and physical-chemical properties of inorganic pigments based on the divalent metals vanadates, Sviridov Readings. 11 (2015) 177-185.
  14. J.M. Vega, N. Granizo, D. De La Fuente, J. Simancas, M. Morcillo, Corrosion inhibition of aluminum by coatings formulated with Al-Zn-vanadate hydrotalcite, Prog. Org. Coatings. 70 (2011) 213-219. doi:10.1016/j.porgcoat.2010.08.014. otwiera się w nowej karcie
  15. Y. Li, S. Li, Y. Zhang, M. Yu, J. Liu, Enhanced protective Zn-Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy, J. Alloys Compd. 630 (2015) 29-36. doi:10.1016/j.jallcom.2014.12.176. otwiera się w nowej karcie
  16. M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor, Corros. Sci. 52 (2010) 602-611. doi:10.1016/j.corsci.2009.10.020. otwiera się w nowej karcie
  17. J. Tedim, M.L. Zheludkevich, A.N. Salak, A. Lisenkov, M.G.S. Ferreira, Nanostructured LDH-container layer with active protection functionality, J. Mater. Chem. 21 (2011) 15464-15470. doi:10.1039/c1jm12463c. otwiera się w nowej karcie
  18. M. Aureliano, C.A. Ohlin, M.O. Vieira, M.P.M. Marques, W.H. Casey, L.A.E. Batista de Carvalho, Characterization of decavanadate and decaniobate solutions by Raman spectroscopy, Dalt. Trans. 45 (2016) 7391-7399. doi:10.1039/C5DT04176G. otwiera się w nowej karcie
  19. D.C. Crans, A.S. Tracey, The chemistry of vanadium in aqueous and nonaqueous solution, in: A.S. Tracey, D.C. Crans (Eds.), Vanadium Compd. Chem. Biochem. Ther. Appl., American Chemical Society, Washington DC, 1998: pp. 2-29. doi:10.1021/bk-1998- 0711.ch001. otwiera się w nowej karcie
  20. M. Henry, J.P. Jolivet, J. Livage, Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation, in: R. Reisfeld (Ed.), Struct. Bond., Springer-Verlag, Berlin, 1992: p. 153. doi:10.1007/BFb0036968. otwiera się w nowej karcie
  21. D. Rehder, Inorganic and Coordination Compounds of Vanadium, John Wiley & Sons, Chichester, 2008.
  22. J.W. Larson, Thermochemistry of Vanadium(5+) in Aqueous Solutions, J. Chem. Eng. Data. 40 (1995) 1276-1280. doi:10.1021/je00022a030. otwiera się w nowej karcie
  23. J.J. Cruywagen, J.B.B. Heyns, A.N. Westra, Vanadium ( V ) Equilibria : Thermodynamic Quantities for Some Protonation and Condensation Reactions, in: A.S. Tracey, D.C. Crans (Eds.), Vanadium Compd. Chem. Biochem. Ther. Appl., American Chemical Society, Washington DC, 1998: pp. 51-59. otwiera się w nowej karcie
  24. J. Li, B. Hurley, R. Buchheit, Inhibition Performance Study of Vanadate on AA2024-T3 at High Temperature by SEM, FIB, Raman and XPS, J. Electrochem. Soc. 162 (2015) C219-C227. doi:10.1149/2.0371506jes. otwiera się w nowej karcie
  25. M. Iannuzzi, T. Young, G.S. Frankel, Aluminum Alloy Corrosion Inhibition by Vanadates, J. Electrochem. Soc. 153 (2006) B533. doi:10.1149/1.2358843. otwiera się w nowej karcie
  26. B.L. Hurley, S. Qiu, R.G. Buchheit, Raman Spectroscopy Characterization of Aqueous Vanadate Species Interaction with Aluminum Alloy 2024-T3 Surfaces, J. Electrochem. Soc. 158 (2011) C125-C131. doi:Doi 10.1149/1.3562557. otwiera się w nowej karcie
  27. Z. Feng, B. Hurley, J. Li, R. Buchheit, Corrosion Inhibition Study of Aqueous Vanadate on Mg Alloy AZ31, J. Electrochem. Soc. 165 (2018) C94-C102. doi:10.1149/2.1171802jes. otwiera się w nowej karcie
  28. N. Birbilis, R.G. Buchheit, Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys An Experimental Survey and Discussion, J. Electrochem. Soc. 152 (2005) B140-B151. doi:10.1149/1.1869984. otwiera się w nowej karcie
  29. N. Wang, J. Qiu, J. Wu, K. You, H. Luo, A Comparison of the Redox Properties of Bulk Vanadium Mixed Oxide Catalysts, Catal. Letters. 145 (2015) 1792-1797. doi:10.1007/s10562-015-1584-6. otwiera się w nowej karcie
  30. T. Kharlamova, E. Sushchenko, T. Izaak, O. Vodyankina, Phase composition, structural peculiarities and catalytic properties of supported MgO-V2O5/Al2O3 catalysts for oxidative dehydrogenation of propane: Insight into formation of surface Mg-V-O phase, Catal. Today. 278 (2016) 174-184. doi:10.1016/j.cattod.2016.05.006. otwiera się w nowej karcie
  31. G.T. Went, S.T. Oyama, A.T. Bell, Laser Raman Spectroscopy of Supported Vanadium Oxide Catalysts, J. Phys. Chem. 94 (1990) 4240-4246. doi:10.1021/j100373a067. otwiera się w nowej karcie
  32. L.J. Burcham, G. Deo, X. Gao, I.E. Wachs, In situ IR , Raman , and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation, Top. Catal. 11-12 (2000) 85-100. doi:10.1023/A:1027275225668. otwiera się w nowej karcie
  33. P.S. Waleska, C. Hess, Oligomerization of Supported Vanadia: Structural Insight Using Surface-Science Models with Chemical Complexity, J. Phys. Chem. C. 120 (2016) 18510-18519. doi:10.1021/acs.jpcc.6b01672. otwiera się w nowej karcie
  34. D. Nitsche, C. Hess, Structure of Isolated Vanadia and Titania: A Deep UV Raman, UV- Vis, and IR Spectroscopic Study, J. Phys. Chem. C. 120 (2016) 1025-1037. doi:10.1021/acs.jpcc.5b10317. otwiera się w nowej karcie
  35. C. Zhang, Q. Yang, C. Koughia, F. Ye, M. Sanayei, S.J. Wen, S. Kasap, Characterization of vanadium oxide thin films with different stoichiometry using Raman spectroscopy, Thin Solid Films. 620 (2016) 64-69. doi:10.1016/j.tsf.2016.07.082. otwiera się w nowej karcie
  36. A.M. Amado, M. Aureliano, P.J.A. Riberio-Claro, J.J.C. Teixeira-Dias, Combined Raman and 51V NMR spectroscopic study of vanadium (V) oligomerization in aqueous alkaline solutions, J. Raman Spectrosc. 24 (1993) 699-703. doi:10.1002/jrs.1250241011. otwiera się w nowej karcie
  37. F. Ureña-Begara, A. Crunteanu, J.P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature, Appl. Surf. Sci. 403 (2017) 717-727. doi:10.1016/j.apsusc.2017.01.160. otwiera się w nowej karcie
  38. G.I. Petrov, V. V. Yakovlev, J. Squier, Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide, Appl. Phys. Lett. 81 (2002) 1023-1025. doi:10.1063/1.1496506. otwiera się w nowej karcie
  39. S.-H. Lee, H.M. Cheong, M. Je Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Microstructure study of amorphous vanadium oxide thin films using raman spectroscopy, J. Appl. Phys. 92 (2002) 1893. doi:10.1063/1.1495074. otwiera się w nowej karcie
  40. S. Hosseinpour, M. Johnson, Vibrational spectroscopy in studies of atmospheric corrosion, Matеrials. 10 (2017) 413. doi:10.3390/ma10040413. otwiera się w nowej karcie
  41. I.E. Wachs, J.-M. Jehng, G. Deo, B.M. Weckhuysen, V. V. Guliants, J.B. Benziger, In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions, Catal. Today. 32 (1996) 47-55. doi:10.1016/S0920-5861(96)00091-0. otwiera się w nowej karcie
  42. F. Zhang, T. Brinck, B.D. Brandner, P.M. Claesson, A. Dedinaite, J. Pan, In situ confocal Raman micro-spectroscopy and electrochemical studies of mussel adhesive protein and ceria composite film on carbon steel in salt solutions, Electrochim. Acta. 107 (2013) 276- 291. doi:10.1016/j.electacta.2013.05.078. otwiera się w nowej karcie
  43. D.S. Kharitonov, I.I. Kurilo, I.M. Zharsky, Corrosion behavior of AMZ (AA3003) alloy in alkaline mediums with sodium orthovanadate addition, Sviridov Readings. 12 (2016) 117-128.
  44. I. Strydom, W. Za, A.G. Dormehl, Process for producing vanadyl/vanadous sulphate, 2004.
  45. D.J. Miller, M.C. Biesinger, N.S. McIntyre, Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination?, Surf. Interface Anal. 33 (2002) 299-305. doi:10.1002/sia.1188. otwiera się w nowej karcie
  46. M.A. Amin, N. El-Bagoury, M.H.H. Mahmoud, M.M. Hessien, S.S. Abd El-Rehim, J. Wysocka, J. Ryl, Catalytic impact of alloyed Al on the corrosion behavior of Co 50 Ni 23 otwiera się w nowej karcie
  47. Ga 26 Al 1.0 magnetic shape memory alloy and catalysis applications for efficient electrochemical H 2 generation, RSC Adv. 7 (2017) 3635-3649. doi:10.1039/C6RA25384A. otwiera się w nowej karcie
  48. D.S. Kharitonov, I.B. Dobryden, B. Sefer, I.M. Zharskii, P.M. Claesson, I.I. Kurilo, Corrosion of AD31 (AA6063) Alloy in Chloride-Containing Solutions, Prot. Met. Phys. Chem. Surfaces. 54 (2018) 291-300. doi:10.1134/S2070205118020077. otwiera się w nowej karcie
  49. E. Heath, O.W. Howarth, Vanadium-51 and oxygen-17 nuclear magnetic resonance study of vanadate(V) equilibria and kinetics, J. Chem. Soc.{,} Dalt. Trans. (1981) 1105-1110. doi:10.1039/DT9810001105. otwiera się w nowej karcie
  50. L. Yin, Y. Jin, C. Leygraf, J. Pan, A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products, Electrochim. Acta. 192 (2016) 310-318. doi:10.1016/j.electacta.2016.01.179. otwiera się w nowej karcie
  51. O. Guseva, J.A. Derose, P. Schmutz, Modelling the early stage time dependence of localised corrosion in aluminium alloys, Electrochim. Acta. 88 (2013) 821-831. doi:10.1016/j.electacta.2012.10.059. otwiera się w nowej karcie
  52. L. Yin, Y. Jin, C. Leygraf, N. Birbilis, J. Pan, Numerical Simulation of Micro-Galvanic Corrosion in Al Alloys: Effect of Geometric Factors, J. Electrochem. Soc. 164 (2017) C75-C84. doi:10.1149/2.1221702jes. otwiera się w nowej karcie
  53. U.G. Nielsen, A. Boisen, M. Brorson, C.J.H. Jacobsen, H.J. Jakobsen, J. Skibsted, Aluminum Orthovanadate (AlVO4): Synthesis and Characterization by 27 Al and 51 V MAS and MQMAS NMR Spectroscopy, Inorg. Chem. 41 (2002) 6432-6439. doi:10.1021/ic0204023. otwiera się w nowej karcie
  54. M.K. Atal, A. Saini, R. Gopal, M. Nagar, V. Dhayal, Synthesis and characterization of a new class of single-phase AlVO 4 precursors, Mater. Res. Innov. 8917 (2016) 1-5. doi:10.1080/14328917.2016.1198459. otwiera się w nowej karcie
  55. P. Buglyó, D.C. Crans, E.M. Nagy, R.L. Lindo, L. Yang, J.J. Smee, W. Jin, L.H. Chi, M.E. Godzala, G.R. Willsky, Aqueous chemistry of the vanadiumIII (VIII) and the VIII- dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats, Inorg. Chem. 44 (2005) 5416-5427. doi:10.1021/ic048331q. otwiera się w nowej karcie
  56. J. Orlikowski, J. Ryl, M. Jarzynka, S. Krakowiak, K. Darowicki, Instantaneous Impedance Monitoring of Aluminum Alloy 7075 Corrosion in Borate Buffer with Admixed Chloride Ions, CORROSION. 71 (2015) 828-838. doi:10.5006/1546. otwiera się w nowej karcie
  57. Z. Shaohong, F. Juan, S. Qiucheng, W. Liangpeng, L. Xinjun, In Situ Characterization on Thermal Transitions of VO2(B): Toward VO2(R) and V2O3, Rare Met. Mater. Eng. 45 (2016) 1374-1380. doi:10.1016/S1875-5372(16)30116-3. otwiera się w nowej karcie
  58. C. Tatsuyama, H. Fan, Raman scattering and phase transitions in V_{2}O_{3} and (V_{1-x}Cr_{x})_{2}O_{3}, Phys. Rev. B. 21 (1980) 2977-2983. doi:10.1103/PhysRevB.21.2977. otwiera się w nowej karcie
  59. Y. Bal, K.E. Bal, G. Cote, A. Lallam, Characterization of the solid third phases that precipitate from the organic solutions of Aliquat?? 336 after extraction of molybdenum(VI) and vanadium(V), Hydrometallurgy. 75 (2004) 123-134. doi:10.1016/j.hydromet.2004.07.004. otwiera się w nowej karcie
  60. G. Du, Z. Sun, Y. Xian, H. Jing, H. Chen, D. Yin, The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride, J. Cryst. Growth. 441 (2016) 117-123. doi:10.1016/j.jcrysgro.2016.02.016. otwiera się w nowej karcie
  61. S. Onodera, Y. Ikegami, Infrared and Raman Spectra of Ammonium, Potassium, Rubidium, and Cesium Metavanadates, Inorg. Chem. 125 (1980) 615-618. otwiera się w nowej karcie
  62. J. Zhang, J. Hu, L. Zhang, Raman Studies on Species in Single and Mixed Solutions of Molybdate and Vanadate, Chinese J. Chem. Phys. 29 (2016) 425-429. doi:10.1063/1674- 0068/29/cjcp1604069. otwiera się w nowej karcie
  63. R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates, Spectrochim. Acta -Part A Mol. Biomol. Spectrosc. 61 (2005) 829- 834. doi:10.1016/j.saa.2004.06.006. otwiera się w nowej karcie
  64. P.S. Seetharaman, S. and Bhat, H. L. and Narayanan, Raman spectroscopic studies on sodium metavanadate, J. Raman Spectrosc. 14 (1983) 401--405. doi:jrs.1250140608. otwiera się w nowej karcie
  65. M.H. Kuok, S.H. Tang, Z.X. Shen, C.W. Ong, Raman Spectroscopic Studies of a-NaVO3, b=NaVO3 and NaVO3*2H20, 26 (1987) 6-12. doi:10.2174/1874067700802010006. otwiera się w nowej karcie
  66. A. Bouzidi, N. Benramdane, S. Bresson, C. Mathieu, R. Desfeux, M. El Marssi, X-ray and Raman study of spray pyrolysed vanadium oxide thin films, Vib. Spectrosc. 57 (2011) 182-186. doi:10.1016/j.vibspec.2011.07.003. otwiera się w nowej karcie
  67. A.N. Unnimaya, E.K. Suresh, R. Ratheesh, Crystal structure and microwave dielectric properties of new alkaline earth vanadate A4V2O9 (A=Ba, Sr, Ca, Mg and Zn) ceramics for LTCC applications, Mater. Res. Bull. 88 (2017) 174-181. doi:10.1016/j.materresbull.2016.12.026. otwiera się w nowej karcie
  68. X. Wu, J. Wang, S. Liu, X. Wu, S. Li, Study of vanadium(IV) species and corresponding electrochemical performance in concentrated sulfuric acid media, Electrochim. Acta. 56 (2011) 10197-10203. doi:10.1016/j.electacta.2011.09.006. otwiera się w nowej karcie
  69. L.E. Briand, J.M. Jehng, L. Cornaglia, A.M. Hirt, I.E. Wachs, Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates, Catal. Today. 78 (2003) 257-268. doi:10.1016/S0920- 5861(02)00350-4. otwiera się w nowej karcie
  70. H.D. Ruan, R.L. Frost, J.T. Kloprogge, Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite, J. Raman Spectrosc. 32 (2001) 745-750. doi:10.1002/jrs.736. otwiera się w nowej karcie
  71. A.M. Amado, M. Aureliano, P.J.A. Riberio-Claro, J.J.C. Teixeira-Dias, Combined Raman and ' ' V NMR Spectroscopic, J. Raman Spectrosc. 24 (1993) 699-703. otwiera się w nowej karcie
  72. F. Rabello De Castro, Y. Lau Lam, M. Hawrylak Herbst, M. MacIel Pereira, T. Crispim Da Silva, N. Homs, P. Ramirez De La Piscina, VO2+ reaction with hydrotalcite and hydrotalcite-derived oxide: The effect of the vanadium loading on the structure of catalyst precursors and on the vanadium species, Eur. J. Inorg. Chem. (2013) 241-247. doi:10.1002/ejic.201200860. otwiera się w nowej karcie
  73. B.L. Hurley, K.D. Ralston, R.G. Buchheit, Corrosion Inhibition of Zinc by Aqueous Vanadate Species, J. Electrochem. Soc. 161 (2014) 471-475. doi:10.1149/2.0381410jes. otwiera się w nowej karcie
  74. M.A. Vuurmant, I.E. Wachs, In situ Raman spectroscopy of alumina-supported metal oxide catalysts, J. Phys. Chem. 96 (1992) 5008-5016. doi:10.1021/j100191a051. otwiera się w nowej karcie
  75. I.E. Wachs, Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts, Catal. Today. 27 (1996) 437-455. doi:http://dx.doi.org/10.1016/0920-5861(95)00203-0. otwiera się w nowej karcie
  76. E. Armstrong, M. Osiak, H. Geaney, C. Glynn, C. O'Dwyer, 2D and 3D vanadium oxide inverse opals and hollow sphere arrays, CrystEngComm. 16 (2014) 10804-10815. doi:10.1039/C4CE01797H. otwiera się w nowej karcie
  77. G. Yoganandan, J.N. Balaraju, Synergistic effect of V and Mn oxyanions for the corrosion protection of anodized aerospace aluminum alloy, Surf. Coatings Technol. 252 (2014) 35- 47. doi:10.1016/j.surfcoat.2014.04.062. otwiera się w nowej karcie
  78. E. Hryha, E. Rutqvist, L. Nyborg, Stoichiometric vanadium oxides studied by XPS: Stoichiometric vanadium oxides studied by XPS, Surf. Interface Anal. 44 (2012) 1022- 1025. doi:10.1002/sia.3844. otwiera się w nowej karcie
  79. J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci. 87 (2014) 150-155. doi:10.1016/j.corsci.2014.06.022. otwiera się w nowej karcie
  80. L. Kobotiatis, N. Pebere, P.G. Koutsoukos, Study of the electrochemical behaviour of the 7075 aluminum alloy in the presence of sodium oxalate, Corros. Sci. 41 (1999) 941-957. doi:10.1016/S0010-938X(98)00164-4. otwiera się w nowej karcie
  81. J. Wysocka, S. Krakowiak, J. Ryl, Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring, Electrochim. Acta. 258 (2017) 1463-1475. doi:10.1016/j.electacta.2017.12.017. otwiera się w nowej karcie
  82. C.M. Abreu, M.J. Cristóbal, R. Figueroa, G. Pena, Passive layers developed on different tempers of AA7075 aluminium alloy after molybdenum implantation: XPS study of molybdenum implantation on AA7075 aluminium alloy, Surf. Interface Anal. 44 (2012) 1039-1044. doi:10.1002/sia.4860. otwiera się w nowej karcie
  83. M. Giza, P. Thissen, G. Grundmeier, Adsorption Kinetics of Organophosphonic Acids on Plasma-Modified Oxide-Covered Aluminum Surfaces, Langmuir. 24 (2008) 8688-8694. doi:10.1021/la8000619. otwiera się w nowej karcie
  84. Q. Liu, X. Tong, G. Zhou, H2O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces, Langmuir. 31 (2015) 13117-13126. doi:10.1021/acs.langmuir.5b02769. otwiera się w nowej karcie
  85. S.B. Madden, J.R. Scully, Inhibition of AA2024-T351 Corrosion Using Permanganate, J. Electrochem. Soc. 161 (2014) C162-C175. doi:10.1149/2.075403jes. otwiera się w nowej karcie
  86. P. Pokorny, P. Tej, P. Szelag, Chromate conversion coatings and their current application, Metalurgija. 55 (2016) 253-256. otwiera się w nowej karcie
  87. M.W. Kendig, R.G. Buchheit, Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings, Corrosion. 59 (2003) 379-400. doi:10.5006/1.3277570. otwiera się w nowej karcie
  88. O. Lopez-Garrity, G.S. Frankel, Corrosion Inhibition of Aluminum Alloy 2024-T3 by Sodium Molybdate, J. Electrochem. Soc. 161 (2013) C95-C106. doi:10.1149/2.044403jes. otwiera się w nowej karcie
  89. O. Lunder, J.C. Walmsley, P. MacK, K. Nisancioglu, Formation and characterisation of a chromate conversion coating on AA6060 aluminium, Corros. Sci. 47 (2005) 1604-1624. doi:10.1016/j.corsci.2004.08.012. otwiera się w nowej karcie
  90. E. McCafferty, Sequence of steps in the pitting of aluminum by chloride ions, Corros. Sci. 45 (2003) 1421-1438. doi:10.1016/S0010-938X(02)00231-7. otwiera się w nowej karcie
  91. C. Hess, G. Tzolova-Muller, R. Herbert, The influence of water on the dispersion of vanadia supported on silica SBA-15: A combined XPS and Raman study, J. Phys. Chem. C. 111 (2007) 9471-9479. doi:10.1021/jp0713920. otwiera się w nowej karcie
  92. X. Gao, S.R. Bare, B.M. Weckhuysen, I.E. Wachs, D. Plaines, V. Centrum, V. Opper, K.U. V Leu, In Situ Spectroscopic Investigation of Molecular Structures of Highly Dispersed Vanadium Oxide on Silica under Various Conditions, (1998) 10842-10852. otwiera się w nowej karcie
  93. S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda, Synthesis, structure and magnetic properties of V4O9-A missing link in binary vanadium oxides, J. Solid State Chem. 183 (2010) 1496-1503. doi:10.1016/j.jssc.2010.04.007. otwiera się w nowej karcie
  94. F. Zhang, J.-O. Nilsson, J. Pan, In Situ and Operando AFM and EIS Studies of Anodization of Al 6060: Influence of Intermetallic Particles, J. Electrochem. Soc. 163 (2016) C609-C618. doi:10.1149/2.0061610jes. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 236 razy

Publikacje, które mogą cię zainteresować

Meta Tagi