Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties - Publikacja - MOST Wiedzy


Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties


Aminotransferases catalyze reversibly the transamination reaction by a ping-pong bi-bi mechanism with pyridoxal 5′-phosphate (PLP) as a cofactor. Various aminotransferases acting on a range of substrates have been reported. Aromatic transaminases are able to catalyze the transamination reaction with both aromatic and acidic substrates. Two aminotransferases from C. albicans, Aro8p and Aro9p, have been identified recently, exhibiting different catalytic properties. To elucidate the multiple substrate recognition of the two enzymes we determined the crystal structures of an unliganded CaAro8p, a complex of CaAro8p with the PLP cofactor bound to a substrate, forming an external aldimine, CaAro9p with PLP in the form of internal aldimine, and CaAro9p with a mixture of ligands that have been interpreted as results of the enzymatic reaction. The crystal structures of both enzymes contains in the asymmetric unit a biologically relevant dimer of 55 kDa for CaAro8 and 59 kDa for CaAro9p protein subunits. The ability of the enzymes to process multiple substrates could be related to a feature of their architecture in which the active site resides on one subunit while the substrate-binding site is formed by a long loop extending from the other subunit of the dimeric molecule. The separation of the two functions to different chemical entities could facilitate the evolution of the substrate-binding part and allow it to be flexible without destabilizing the conservative catalytic mechanism.


  • 1


  • 1

    Web of Science

  • 0


Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF STRUCTURAL BIOLOGY nr 205, wydanie 3, strony 26 - 33,
ISSN: 1047-8477
Rok wydania:
Opis bibliograficzny:
Kiliszek A., Rypniewski W., Rząd K., Milewski S., Gabriel I.: Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties// JOURNAL OF STRUCTURAL BIOLOGY. -Vol. 205, iss. 3 (2019), s.26-33
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jsb.2019.02.001
Bibliografia: test
  1. Brunke, S., Seider, K., Richter, M.E., Bremer-Streck, S., Ramachandra, S., Kiehntopf, M., Brock, M., Hube, B., 2014. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot. Cell 13, 758-765. otwiera się w nowej karcie
  2. Bulfer, S.L., Brunzelle, J.S., Trievel, R.C., 2013. Crystal structure of Saccharomyces cer- evisiae Aro8, a putative alpha-aminoadipate aminotransferase. Protein Sci.. 22, 1417-1424. otwiera się w nowej karcie
  3. Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. otwiera się w nowej karcie
  4. Han, Q., Cai, T., Tagle, D.A., Robinson, H., Li, J.Y., 2008. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. otwiera się w nowej karcie
  5. A. Kiliszek, et al. Journal of Structural Biology 205 (2019) 26-33 otwiera się w nowej karcie
  6. Biosci. Rep. 28, 205-215. otwiera się w nowej karcie
  7. Iraqui, I., Vissers, S., Cartiaux, M., Urrestarazu, A., 1998. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic amino- transferases I and II reveals a new aminotransferase subfamily. Mol. Gen. Genet. 257, 238-248. otwiera się w nowej karcie
  8. Kabsch, W., 2010. Xds. Acta Crystallogr. D-Biol. Crystallogr. 66, 125-132. otwiera się w nowej karcie
  9. Karsten, W.E., Reyes, Z.L., Bobyk, K.D., Cook, P.F., Chooback, L., 2011. Mechanism of the aromatic aminotransferase encoded by the Aro8 gene from Saccharomyces cerevisiea. Arch. Biochem. Biophys. 516, 67-74. otwiera się w nowej karcie
  10. Kradolfer, P., Niederberger, P., Hutter, R., 1982. Tryptophan degradation in sacchar- omyces-cerevisiae -characterization of 2 aromatic aminotransferases. Arch. Microbiol. 133, 242-248. otwiera się w nowej karcie
  11. Langer, G., Cohen, S.X., Lamzin, V.S., Perrakis, A., 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171-1179. otwiera się w nowej karcie
  12. Mccoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. otwiera się w nowej karcie
  13. Mueller, U., Forster, R., Hellmig, M., Huschmann, F.U., Kastner, A., Malecki, P., Puhringer, S., Rower, M., Sparta, K., Steffien, M., Uhlein, M., Wilk, P., Weiss, M.S., 2015. The macromolecular crystallography beamlines at BESSY II of the Helmholtz- Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 130. otwiera się w nowej karcie
  14. Murshudov, G.N., Vagin, A.A., Dodson, E.J., 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D-Biol. Crystallogr. 53, 240-255. otwiera się w nowej karcie
  15. Paiardini, A., Bossa, F., Pascarella, S., 2004. Evolutionarily conserved regions and hy- drophobic contacts at the superfamily level: the case of the fold-type I, pyridoxal-5 '-phosphate-dependent enzymes. Protein Sci. 13, 2992-3005. otwiera się w nowej karcie
  16. Rzad, K., Gabriel, I., 2015. Characterization of two aminotransferases from Candida al- bicans. Acta Biochim. Pol. 62, 903-912.
  17. Rzad, K., Milewski, S., Gabriel, I., 2018. Versatility of putative aromatic amino- transferases from Candida albicans. Fungal Genet. Biol. 110, 26-37.
  18. Tomita, T., Miyagawa, T., Miyazaki, T., Fushinobu, S., Kuzuyama, T., Nishiyama, M., 2009. Mechanism for multiple-substrates recognition of alpha-aminoadipate amino- transferase from Thermus thermophilus. Proteins 75, 348-359. otwiera się w nowej karcie
  19. Urrestarazu, A., Vissers, S., Iraqui, I., Grenson, M., 1998. Phenylalanine-and tyrosine- auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol. Gen. Genet. 257, 230-237. otwiera się w nowej karcie
  20. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A., Wilson, K.S., 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D-Biol. Crystallogr. 67, 235-242. otwiera się w nowej karcie
  21. A. Kiliszek, et al. Journal of Structural Biology 205 (2019) 26-33 otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 34 razy

Publikacje, które mogą cię zainteresować

Meta Tagi