Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers - Publikacja - MOST Wiedzy

Wyszukiwarka

Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers

Abstrakt

Full-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical opti¬mization is challenging due to expensive simulations and large number of parameters. In this paper, a novel gradi¬ent-based procedure with numerical derivatives is pro¬posed for expedited optimization of compact microstrip impedance matching transformers. The method restricts the use of finite differentiation which is replaced for se¬lected parameters by a rank-one Broyden updating for¬mula. The usage of the formula is governed by an ac¬ceptance parameter which is made dependent on the pa¬rameter space dimensionality. This facilitates handling circuits of various complexities. The proposed approach is validated using three impedance matching transformer circuits with the number of parameters varying from ten to twenty. A significant speedup of up to 50 percent is demon¬strated with respect to the reference algorithm.

Cytowania

  • 1 2

    CrossRef

  • 1 2

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 16 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
RADIOENGINEERING nr 28, strony 572 - 578,
ISSN: 1210-2512
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kozieł S., Pietrenko-Dąbrowska A.: Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers// RADIOENGINEERING -Vol. 28,iss. 3 (2019), s.572-578
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.13164/re.2019.0572
Bibliografia: test
  1. CARIOU, M., POTELON, B., QUENDO, C., et al. Compact X- band filter based on substrate integrated coaxial line stubs using advanced multilayer PCB technology. IEEE Transactions on Mi- crowave Theory and Techniques, 2017. vol. 65, no. 2, p. 496-503. DOI: 10.1109/TMTT.2016.2632114 otwiera się w nowej karcie
  2. FUJIMOTO, K., MORISHITA, H. Modern Small Antennas. Cambridge (UK): Cambridge University Press, Cambridge, 2014. ISBN: 978-0-521-87786-2, DOI: 10.1017/CBO9780511977602 otwiera się w nowej karcie
  3. TSENG, C.-H., CHEN, H.-J. Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 11, p. 734-736. DOI: 10.1109/LMWC.2008.2005225 otwiera się w nowej karcie
  4. KOZIEL, S., KURGAN P. Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21240 otwiera się w nowej karcie
  5. MAO, Y., GUO, S., CHEN, M. Compact dual-band monopole antenna with defected ground plane for Internet of Things. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 8, p. 1332-1338. DOI: 10.1049/iet-map.2017.0860 otwiera się w nowej karcie
  6. LI, W., HEI, Y., GRUBB, P. M., et al. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access, 2018, vol. 6, p. 50290-50298. DOI: 10.1109/ACCESS.2018.2868707 otwiera się w nowej karcie
  7. TANG, H., WANG, K. WU, R., et al. A novel broadband circularly polarized monopole antenna based on C-shaped radiator. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 964-967. DOI: 10.1109/LAWP.2016.2615159 otwiera się w nowej karcie
  8. TING, H. L., HSU, S. K., WU, T. L. A novel and compact eight- port forward-wave directional coupler with arbitrary coupling level design using four-model control theory. IEEE Transactions on Mi- crowave Theory and Techniques, 2017, vol. 65, no. 2, p. 467-475. DOI: 10.1109/TMTT.2016.2623709 otwiera się w nowej karcie
  9. KOZIEL, S., BEKASIEWICZ, A. Rapid simulation-driven multi- objective design optimization of decomposable compact microwave passives. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2454-2461. DOI: 10.1109/TMTT.2016.2583427 otwiera się w nowej karcie
  10. KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888-890. DOI: 10.1109/LMWC.2016.2615005 otwiera się w nowej karcie
  11. SHEIKHI, A., ALIPOUR, A., ABDIPOUR, A. Design of compact wide stopband microstrip low-pass filter using T-shaped resonator. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 2, p. 111-113. DOI: 10.1109/LMWC.2017.2652862 otwiera się w nowej karcie
  12. LI, W., TU, Z., CHU, Q., et al. Differential stepped-slot UWB antenna with common-mode suppression and dual sharp-selectivity notched bands. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 11, p. 1120-1123. DOI: 10.1109/LAWP.2015.2496159 otwiera się w nowej karcie
  13. PANDEY, G. K., VERMA, H., MESHRAM, M. K. Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 2015, vol. 51, no. 4, p. 308-310. DOI: 10.1049/el.2014.3540 otwiera się w nowej karcie
  14. SRIVASTAVA, G., MOHAN, A., CHAKRABARTY, A. Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 1139-1142. DOI: 10.1109/lawp.2016.2624736 otwiera się w nowej karcie
  15. KOZIEL, S., KURGAN, P. Compact cell topology selection for size-reduction-oriented design of microstrip rat-race couplers. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21261 otwiera się w nowej karcie
  16. ZHANG, Y., NIKOLOVA, N. K., MESHRAM, M. K. Design optimization of planar structures using self-adjoint sensitivity analysis. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 3060-3066. DOI: 10.1109/TAP.2012.2194684 otwiera się w nowej karcie
  17. BURGARD, S., FARLE, O., LOEW, P. Fast shape optimization of microwave devices based on parametric reduced-order models. IEEE Transactions on Magnetics, 2014, vol. 50, no. 2, p. 629-632. DOI: 10.1109/TMAG.2013.2282420 otwiera się w nowej karcie
  18. KOZIEL, S., YANG, X. S., ZHANG, Q. J. (Eds.) Simulation- Driven Design Optimization and Modeling for Microwave Engineering. London (UK): Imperial College Press, 2013. ISBN: 978-1848169166 DOI: 10.1142/p860 otwiera się w nowej karcie
  19. BANDLER, J. W., CHENG, Q. S., DAKROURY, S. A., et al. Space mapping: the state of the art. IEEE Transactions on Micro- wave Theory and Techniques, 2004, vol. 52, no. 1, p. 337-361. DOI: 10.1109/TMTT.2003.820904 otwiera się w nowej karcie
  20. SU, Y., LI, J., FAN, Z., et al. Shaping optimization of double reflector antenna based on manifold mapping. In International Applied Computational Electromagnetics Society Symposium (ACES). Shuzou (China), 2017, p. 1-2. ISBN: 978-0-9960-0785-6
  21. LEIFSSON, L., KOZIEL, S. Surrogate modeling and optimization using shape-preserving response prediction: a review. Engineering Optimization, 2014, vol. 48, no. 3, p. 476-496. DOI: 10.1080/0305215X.2015.1016509 otwiera się w nowej karcie
  22. KOZIEL, S., BEKASIEWICZ, A. Rapid microwave design optimization in frequency domain using adaptive response scaling. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 9, p. 2749-2757. DOI: 10.1109/TMTT.2016.2590551 otwiera się w nowej karcie
  23. KOZIEL, S. Fast simulation-driven antenna design using response- feature surrogates. International Journal of RF & Microwave Computer Aided Engineering, 2015, vol. 25, no. 5, p. 394-402. DOI: 10.1002/mmce.20873 otwiera się w nowej karcie
  24. DE VILLIERS, D. I. L., COUCKUYT, I., DHAENE, T. Multi- objective optimization of reflector antennas using kriging and probability of improvement. In IEEE AP-S International Sympo- sium on Antennas and Propagation. San Diego (USA), 2017, p. 985-986, DOI: 10.1109/APUSNCURSINRSM.2017.8072535 otwiera się w nowej karcie
  25. ZHANG, C., JIN, J., NA, W., et al. Multivalued neural network inverse modeling and applications to microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3781-3797. DOI: 10.1109/TMTT.2018.2841889 otwiera się w nowej karcie
  26. ZHANG, J., ZHANG, C., FENG, F., et al. Polynomial chaos-based approach to yield-driven EM optimization. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 7, p. 3186-3199. DOI: 10.1109/TMTT.2018.2834526 otwiera się w nowej karcie
  27. KOZIEL, S., KURGAN, P. Rapid design of miniaturized branch- line couplers through concurrent cell optimization and surrogate- assisted fine-tuning. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 9, p. 957-963. DOI: 10.1049/iet-map.2014.0600 otwiera się w nowej karcie
  28. NOCEDAL, J., WRIGHT, S. J. Numerical Optimization. 2nd ed. New York (USA): Springer, 2006. ISBN: 978-0-387-40065-5 DOI: 10.1007/978-0-387-40065-5 otwiera się w nowej karcie
  29. KOZIEL, S. Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. Applied Computational Electromagnetics Society Journal, 2010, vol. 25, no. 7, p. 578-586.
  30. CONN, A. R., GOULD, N. I. M., TOINT, P. L. Trust Region Methods. Philadelphia (USA): MPS-SIAM Series on Optimization, 2000. ISBN: 0-89871-460-5 DOI: 10.1137/1.9780898719857 otwiera się w nowej karcie
  31. BROYDEN, C. G. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 1965, vol. 19, no. 92, p. 577-593. DOI: 10.1090/S0025-5718-1965- 0198670-6 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 63 razy

Publikacje, które mogą cię zainteresować

Meta Tagi