Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte - Publikacja - MOST Wiedzy

Wyszukiwarka

Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte

Abstrakt

The electrochemical performance of Co3O4/CeO2 mixed oxide materials as electrodes, when exposed to H2S/H2O atmospheres, was examined employing a proton conducting symmetrical cell, with BaZr0.7Ce0.2Y0.1O3 (BZCY72) as the solid electrolyte. The impact of temperature (700–850 °C) and H2S concentration (0–1 v/v%) in steam-rich atmospheres (90 v/v% H2O) on the overall cell performance was thoroughly assessed by means of electrochemical impedance spectroscopy (EIS) studies. The performance of the Co3O4/CeO2 electrode was significantly enhanced by increasing the H2S concentration and temperature. The obtained results were interpreted on the basis of EIS results and physicochemical characterization (XRD, SEM) studies of fresh and used electrodes. Notably, it was found that the mass transport processes, mainly associated with the adsorption and diffusion of the intermediate species resulting by the chemical and half-cell reactions taking place during cell operation, dominate the electrode polarization resistance compared with the charge transfer processes. Upon increasing temperature and H2S concentration, the electrode resistance is substantially lowered, due to the in situ activation and morphological modifications of the electrode, induced by its interaction with the reactants (H2S/H2O) and products (H2/SO2) mixtures.

Cytowania

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Autorzy (7)

  • Zdjęcie użytkownika  Tzouliana Kraia

    Tzouliana Kraia

    • University of Western Macedonia, Kozani, Greece Department of Mechanical Engineering,
  • Zdjęcie użytkownika Dr Einar Vollestad

    Einar Vollestad Dr

    • University of Oslo Department of Chemistry, Centre for Materials Science and Nanotechnology
  • Zdjęcie użytkownika Dr Ragnar Strandbakke

    Ragnar Strandbakke Dr

    • University of Oslo Department of Chemistry, Centre for Materials Science and Nanotechnology
  • Zdjęcie użytkownika Dr M Konsolakis

    M Konsolakis Dr

    • Technical University of Crete, Chania, Greece School of Production Engineering and Management,
  • Zdjęcie użytkownika Dr Truls Norby

    Truls Norby Dr

    • University of Oslo Department of Chemistry, Centre for Materials Science and Nanotechnology
  • Zdjęcie użytkownika Dr G.e. Marnellos

    G.e. Marnellos Dr

    • University of Western Macedonia, Kozani, Greece Department of Mechanical Engineering

Cytuj jako

Pełna treść

pobierz publikację
pobrano 28 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SOLID STATE IONICS nr 306, strony 31 - 37,
ISSN: 0167-2738
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Kraia T., Wachowski S., Vollestad E., Strandbakke R., Konsolakis M., Norby T., Marnellos G.: Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte// SOLID STATE IONICS. -Vol. 306, (2017), s.31-37
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ssi.2017.04.010
Bibliografia: test
  1. M. Midilli, A. Aya, N. Kale, Veziroglu, A parametric investigation of hydrogen energy potential based on H 2 S in Black Sea deep waters, Int. J. Hydrog. Energy 32 (2007) 117-124. otwiera się w nowej karcie
  2. Paris Agreement, United Nations Framework Convention on Climate Change. http://unfccc.int/files/essential_background/convention/application/pdf/english_ paris_agreement.pdf, (2015) accessed 10.12.16.
  3. K. Fukuda, M. Dokiya, T. Kameyama, Y. Kotera, Catalytic decomposition of hydrogen sulfide, Ind. Eng. Chem. Fundam. 17 (1978) 243-247. otwiera się w nowej karcie
  4. D. Ipsakis, Tz. Kraia, G.E. Marnellos, M. Ouzounidou, S. Voutetakis, R. Dittmeyer, A. Dubbe, K. Haas-Santo, M. Konsolakis, H.E. Figen, N.O. Güldal, S.Z. Baykara, An electrocatalytic membrane-assisted process for hydrogen production from H2S in Black Sea: preliminary results, Int. J. Hydrog. Energy 40 (2015) 7530-7538. otwiera się w nowej karcie
  5. E. Luinstra, H 2 S: a potential source for hydrogen, Sulphur 244 (1996) 37-47.
  6. J. Zaman, A. Chakma, Production of hydrogen and sulphur from hydrogen sulphides, Fuel Process Technol. 41 (1995) 159-198. otwiera się w nowej karcie
  7. J. Li, J.L. Luo, K.T. Chuang, A.R. Sanger, Proton conductivity and chemical stability of Li 2 SO 4 based electrolyte in a H 2 S-air fuel cell, J. Power Sources 160 (2006) 909-914. otwiera się w nowej karcie
  8. S.V. Slavov, K.T. Chuang, A.R. Sanger, J.C. Donini, J. Kot, S. Petrovic, A proton- conducting solid state H 2 S-O 2 fuel cell. 1. Anode catalysts, and operation at atmospheric pressure and 20-90°C, Int. J. Hydrog. Energy 23 (1998) 1203-1212. otwiera się w nowej karcie
  9. E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem. Soc. Rev. 39 (2010) 339-359. otwiera się w nowej karcie
  10. L. Malavasi, C.A.J. Fisher, M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications. Structural and mechanistic features, Chem. Soc. Rev. 39 (2010) 4370-4387. otwiera się w nowej karcie
  11. V. Vorontsov, J.L. Luo, A.R. Sanger, K.T. Chuang, Synthesis and characterization of new ternary transition metal sulphide anodes for H 2 S-powered solid oxide fuel cell, J. Power Sources 183 (2008) 76-83. otwiera się w nowej karcie
  12. M. Gong, X. Liu, J. Trembly, C. Johnson, Sulfur-tolerant anode materials for solid oxide fuel cell application, J. Power Sources 168 (2007) 289-298. otwiera się w nowej karcie
  13. M. Konsolakis, The role of copper-ceria interactions in catalysis science: recent theoretical and experimental advances, Appl. Catal. B Environ. 198 (2016) 49-66. otwiera się w nowej karcie
  14. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nat. Mater. 3 (2004) 17-27. otwiera się w nowej karcie
  15. Tz. Kraia, M. Konsolakis, G.E. Marnellos, H 2 S in Black Sea: turning an environ- mental threat to an opportunity for clean H 2 production via an electrochemical membrane reactor, Research Progress in H 2 S-PROTON Project, MATEC Web Conf. 41, 2016 (04002).
  16. NorECs, Norwegian Electro Ceramics AS. http://www.norecs.com http://www. norecs.com/index.php?page=Newsletter+154 (accessed 08.12.16). otwiera się w nowej karcie
  17. J. Li, J.-L. Luo, K.T. Chuang, A.R. Sanger, Chemical stability of Y-doped Ba(Ce,Zr)O 3 perovskites in H 2 S-containing H 2 , Electrochim. Acta 53 (2008) 3701-3707. otwiera się w nowej karcie
  18. R. Strandbakke, O. Dyrlie, F.S. Hage, T. Norby, Reaction kinetics of protons and oxide ions in LSM/lanthanum tungstate cathodes with Pt nanoparticle activation, J. Electrochem. Soc. 163 (2016) 507-515. otwiera się w nowej karcie
  19. R. Strandbakke, V.A. Cherepanov, A.Y. Zuev, D.S. Tsvetkov, C. Argirusis, G. Sourkouni, S. Prünte, T. Norby, Gd-and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells, Solid State Ionics 278 (2015) 120-132. otwiera się w nowej karcie
  20. J.M. Polfus, T. Norby, R. Bredesen, Protons in oxysulfides, oxysulfates, and sulfides: a first-principles study of La 2 O 2 S, La 2 O 2 SO 4 , SrZrS 3 , and BaZrS 3 , J. Phys. Chem. C 119 (2015) 23875-23882. otwiera się w nowej karcie
  21. D. Medvedev, J. Lyagaeva, S. Plaskin, A. Demin, P. Tsiakaras, Sulfur and carbon tolearance pf BaCeO 3 -BaZrO 3 proton conducting materilas, J. Power Sources 273 (2015) 716-723. otwiera się w nowej karcie
  22. M. Gong, X. Liu, J. Trembly, C. Johnson, Sulfur-tolerant anode materials for solid oxide fuel cell application, J. Power Sources 168 (2007) 289-298. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 126 razy

Publikacje, które mogą cię zainteresować

Meta Tagi