Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility - Publikacja - MOST Wiedzy

Wyszukiwarka

Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility

Abstrakt

Solubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived molecular descriptors, adequate for development of an ensemble of neural networks model (ENNM), for solubility computations of sulfamethizole (SMT) in neat and aqueous binary solvent mixtures. The machine learning procedure utilized information encoded in σ-potential profiles computed using the COSMO-RS approach. The resulting nonlinear model is accurate in backcomputing SMT solubility and allowed for extensive screening of green solvents. Since the experimental characteristics of SMT solubility are limited, the data pool was extended by new solubility measurements in water, five neat organic solvents (acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, and methanol), and their aqueous binary mixtures at 298.15, 303.15, 308.15, and 313.15 K. Experimentally determined order of decreasing SMT solubility in neat solvents is the following: N,N-dimethylformamide > dimethyl sulfoxide > methanol > acetonitrile > 1,4dioxane >> water, in all studied temperatures. Similar trends are observed for aqueous binary mixtures. Since N,N-dimethylformamide is not considered as a green solvent, the more acceptable replacers were searched for using the developed model. This step led to the conclusion that 4-formylmorpholine is a real alternative to N,N-dimethylformamide, fulfilling all requirements of both high dissolution potential and environmental friendliness.

Cytowania

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 71 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Materials nr 14, wydanie 20,
ISSN: 1996-1944
Rok wydania:
2021
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma14205915
Weryfikacja:
Brak weryfikacji

wyświetlono 172 razy

Publikacje, które mogą cię zainteresować

Meta Tagi