Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria - Publikacja - MOST Wiedzy

Wyszukiwarka

Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

Abstrakt

A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the ‘curse’ of dimensionality typical of many engineering designs.

Cytowania

  • 1

    CrossRef

  • 2

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 36 razy

Licencja

Copyright (2017 Informa UK Limited, trading as Taylor & Francis Group)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENGINEERING OPTIMIZATION nr 50, wydanie 1, strony 120 - 144,
ISSN: 0305-215X
ISSN:
1029-0273
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kowalczuk Z., Białaszewski T.: Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria// ENGINEERING OPTIMIZATION. -Vol. 50, iss. 1 (2018), s.120-144
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/0305215x.2017.1305374
Bibliografia: test
  1. Bader, J., and E. Zitzler. 2009. "A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces." Confer- ence on Multiple Objective and Goal Programming (MOPGP 2008), Lecture Notes in Economics and Mathematical Systems, Springer. otwiera się w nowej karcie
  2. Białaszewski, T., and Z. Kowalczuk. 2016. Solving Highly-Dimensional Multi-objective Optimization Problems by Means of Genetic Gender, Advanced and Intelligent Computations in Diagnosis and Control. Advances in Intel- ligent Systems and Computing, Springer-Verlag, Cham-Heidelberg-New York-Dordrecht-London, AISC 386, pp. 317-329. otwiera się w nowej karcie
  3. Chen, J., R. J. Patton, and G. Liu. 1996. "Optimal Residual Design for Fault Diagnosis Using Multi-objective Optimiza- tion and Genetic Algorithms." International Journal of Systems Science 27 (6): 567-576. otwiera się w nowej karcie
  4. Coello, C. C. A., G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary Algorithms for Solving Multi-objective Problems, Genetic and Evolutionary Computation. 2nd ed. Berlin: Springer.
  5. Cotta, C., and R. Schaefer. 2004. "Special Issue on Evolutionary Computation." International Journal of Applied Mathematics and Computer Science 14 (3): 279-440.
  6. Deb, K. 2007. "Current Trends in Evolutionary Multi-objective Optimization." International Journal for Simulation and Multidisciplinary Optimization 1 (1): 1-8. otwiera się w nowej karcie
  7. Deb, K., and H. Gupta. 2006. "Introducing Robustness in Multi-objective Optimization." Evolutionary Computation Journal 14 (4): 463-494. otwiera się w nowej karcie
  8. Deb, K., M. Mohan, and S. Mishra. 2005. "Evaluating the Domination Based Multiobjective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions." Evolutionary Computation Journal 13 (4): 501-525. otwiera się w nowej karcie
  9. Emmerich, M., N. Beume, and B. Naujoks. 2005. "An EMO Algorithm Using the Hypervolume Measure as Selec- tion Criterion, Evolutionary Multi-criterion Optimization." Lecture Notes in Computer Science 3410: 62-76. Berlin: Springer. otwiera się w nowej karcie
  10. Fonseca, C. M., and P. J. Fleming. 1995. "An Overview of Evolutionary Algorithms in Multiobjective Optimization." IEEE Transactions on Evolutionary Computation 3 (1): 1-16. otwiera się w nowej karcie
  11. Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley. otwiera się w nowej karcie
  12. Hajela, P., and C. Y. Lin. 1992. "Genetic Search Strategies in Multicriterion Optimal Design." Structural Optimization 4: 99-107. otwiera się w nowej karcie
  13. Holland, H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press.
  14. Horn, J., and N. Nafpliotis. 1993. Multiobjective Optimization using the Niched Pareto Genetic Algorithm, Technical Report, (93005). Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana, Champaign. otwiera się w nowej karcie
  15. Horn, J., N. Nafpliotis, and D. E. Goldberg. 1994. "A Niched Pareto Genetic Algorithm for Multiobjective Optimiza- tion." IEEE World Congress on Computational Computation, 1, pp. 82-87, Piscataway, NJ. otwiera się w nowej karcie
  16. Izadi-Zamanabadi, R., and M. Blanke. 1998. A Ship Propulsion System Model for Fault-Tolerant Control, Technical Report, (4262). Aalborg University, Denmark. otwiera się w nowej karcie
  17. Korbicz, J., J. M. Kościelny, Z. Kowalczuk, and W. Cholewa, eds. 2004. Fault Diagnosis, Models, Artificial Intelligence, Applications. Berlin: Springer.
  18. Kowalczuk, Z., and T. Białaszewski. 2001. Evolutionary Multi-objective Optimization with Genetic Sex Recognition, In: Proc. 7th IEEE Intern. Conf. on Methods and Models in Automation and Robotics, 1, pp. 143-148, Miedzyzdroje, Poland. otwiera się w nowej karcie
  19. Kowalczuk, Z., and T. Białaszewski. 2004. Genetic Algorithms in Multi-objective Optimization of Detection Observers, In: Korbicz et al. (2004), pp. 511-556, Berlin: Springer. otwiera się w nowej karcie
  20. Kowalczuk, Z., and T. Białaszewski. 2006a. "Improving Evolutionary Multi-objective Optimisation by Niching." International Journal of Information Technology and Intelligent Computing 1 (2): 245-257. otwiera się w nowej karcie
  21. Kowalczuk, Z., and T. Białaszewski. 2006b. "Improving Evolutionary Multi-objective Optimisation Using Genders." Artificial Intelligence and Soft Computing, Lecture Notes in Artificial Intelligence 4029: 390-399. Springer, Berlin. otwiera się w nowej karcie
  22. Kowalczuk, Z., and T. Białaszewski. 2006c. "Niching Mechanisms in Evolutionary Computations." International Journal of Applied Mathematics and Computer Science 16 (1): 59-84. otwiera się w nowej karcie
  23. Kowalczuk, Z., and T. Białaszewski. 2011. "Gender Selection of a Criteria Structure in Multi-objective Optimization of Decision Systems (in Polish)." Pomiary Automatyka Kontrola 57 (7): 810-814. otwiera się w nowej karcie
  24. Kowalczuk, Z., and T. Białaszewski. 2013. Gender Approach to Multi-objective Optimization of Detection Systems by Pre-selection of Criteria, Intelligent Systems in Technical and Medical Diagnosis. Advances in Intelligent Systems and Computing. Springer, Berlin, AISC 230, pp. 161-174. otwiera się w nowej karcie
  25. Kowalczuk, Z., and P. Suchomski. 2004. Control Theory Methods in Diagnostic System Design, In: Korbicz et al. (2004), pp. 155-218, Springer, Berlin. otwiera się w nowej karcie
  26. Kowalczuk, Z., P. Suchomski, and T. Białaszewski. 1999. "Evolutionary Multi-objective Pareto Optimization of Diag- nostic State Observers." International Journal of Applied Mathematics and Computer Science 9 (3): 689-709. otwiera się w nowej karcie
  27. Kukkonen, S., and J. Lampinen. 2005. "GDE3: The Third Evolution Step of Generalized Differential Evolution." IEEE Congress on Evolutionary Computation 1: 443-450. otwiera się w nowej karcie
  28. Lis, J., and A. Eiben. 1997. "A Multi-sexual Genetic Algorithm for Multiobjective Optimization." Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 59-64. otwiera się w nowej karcie
  29. Liu, B., F. V. Fernández, Q. Zhang, M. Pak, S. Sipahi, and G. G. E. Gielen. 2010. "An Enhanced MOEA/D-DE and its Application to Multiobjective Analog Cell Sizing." IEEE Congress on Evolutionary Computation, pp. 1-7. otwiera się w nowej karcie
  30. Man, K. S., K. S. Tang, S. Kwong, and W. A. H. Lang. 1997. Genetic Algorithms for Control and Signal Processing. London: Springer. otwiera się w nowej karcie
  31. Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer. otwiera się w nowej karcie
  32. Patton, R. J., P. M. Frank, and R. N. Clark, eds. 1989. Fault Diagnosis in Dynamic Systems. Theory and Application. New York: Prentice Hall. otwiera się w nowej karcie
  33. Qingfu, Z., Z. Aimin, Z. Shizheng, N. S. Ponnuthurai, L. Wudong, and T. Santosh. 2009. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Working Report, CES-887, School of Computer Science and Electrical Engineering, University of Essex.
  34. Rejeb, J., and M. AbuElhaija. 2000. "New Gender Genetic Algorithm for Solving Graph Partitioning Problems." Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 1, pp. 444-446. otwiera się w nowej karcie
  35. Sanchez-Velazco, J., and J. A. Bullinaria. 2003a. "Gendered Selection Strategies in Genetic Algorithms for Optimiza- tion." Proceedings of the UK Workshop on Computational Intelligence, pp. 217-223, Bristol, UK.
  36. Sanchez-Velazco, J., and J. A. Bullinaria. 2003b. "Sexual Selection with Competitive/Co-operative Operators for Genetic Algorithms." Proc. the IASTED Intern. Conf. on Neural Networks and Computational Intelligence. ACTA Press, pp. 191-196.
  37. Schaffer, J. D. 1985. "Multiple Objective Optimization with Vector Evaluated Genetic Algorithms." Proc. Intern. Conf. on Genetic Algorithms and their Applications, pp. 93-100. Lawrence Erlbaum Associates, Pittsburgh, PA. otwiera się w nowej karcie
  38. Sodsee, S., P. Meesad, Z. Li, and W. Halang. 2008. A Networking Requirement Application by Multi-objective Genetic Algorithms with Sexual Selection, 3rd International Conference Intelligent System and Knowledge Engineering, 1, pp. 513-518. otwiera się w nowej karcie
  39. Song Goh, K., A. Lim, and B. Rodrigues. 2003. "Sexual Selection for Genetic Algorithms." Artificial Intelligence Review 19 (2): 123-152. otwiera się w nowej karcie
  40. Srinivas, N., and K. Deb. 1994. "Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms." Evolutionary Computation 2 (3): 221-248. otwiera się w nowej karcie
  41. Suchomski, P., and Z. Kowalczuk. 2004. Robust H∞-Optimal Synthesis of FDI Systems, In: Korbicz et al. (2004), pp. 261-298, Springer, Berlin. otwiera się w nowej karcie
  42. Viennet, R., C. Fontiex, and I. Marc. 1996. "Multicriteria Optimisation Using a Genetic Algorithm for Determining a Pareto Set." International Journal of Systems Science 27 (2): 255-260. otwiera się w nowej karcie
  43. Vrajitoru, D. 2002. "Simulating Gender Separation with Genetic Algorithms." Proceedings of the Genetic and Evolu- tionary Computation Conference (GECCO), pp. 634-641. otwiera się w nowej karcie
  44. While, L., P. Hingston, L. Barone, and S. Huband. 2006. "A Faster Algorithm for Calculating Hypervolume." IEEE Transactions on Evolutionary Computation 10 (1): 29-38. otwiera się w nowej karcie
  45. Yan, T. 2010. An Improved Genetic Algorithm and its Blending Application with Neural Network, 2nd International Workshop Intelligent Systems and Applications, pp. 1-4. otwiera się w nowej karcie
  46. Yazdi, J. 2016. "Decomposition-Based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks." Water Resources Management 30 (8): 2749-2766. otwiera się w nowej karcie
  47. Zakian, V., and U. Al-Naib. 1973. "Design of Dynamical and Control Systems by the Method of Inequalities." IEE Proceedings on Control Theory and Applications 120 (11): 1421-1427. otwiera się w nowej karcie
  48. Zhang, Q., and H. Li. 2007. "MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition." IEEE Transactions on Evolutionary Computation 11 (6): 712-731.
  49. Zitzler, E., and L. Thiele. 1999. "Multi-objective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach." IEEE Transactions on Evolutionary Computation 3 (4): 257-271. otwiera się w nowej karcie
  50. Zitzler, E., L. Thiele, and J. Bader. 2010. "On Set-Based Multi-objective Optimization." IEEE Transactions on Evolution- ary Computation 14 (1): 58-79. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 53 razy

Publikacje, które mogą cię zainteresować

Meta Tagi