Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization - Publikacja - MOST Wiedzy

Wyszukiwarka

Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization

Abstrakt

The surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual grains. Based on the obtained results, we claim that the level of electrochemical heterogeneity significantly depends on the crystallographic texture of BDD. Modification of boron-doped diamond surface termination under anodic oxidation is assumed to be a multistage process.

Cytowania

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 34 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ELECTROCHEMISTRY COMMUNICATIONS nr 83, strony 41 - 45,
ISSN: 1388-2481
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Ryl J., Zieliński A., Bogdanowicz R., Darowicki K.: Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization// ELECTROCHEMISTRY COMMUNICATIONS. -Vol. 83, (2017), s.41-45
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.elecom.2017.08.019
Bibliografia: test
  1. K.B. Holt, A.J. Bard, Y. Show, G.M. Swain, Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels, J. Phys. Chem. B 108 (2004) 15117-15127, http://dx.doi.org/10.1021/jp048222x. otwiera się w nowej karcie
  2. T. Kolber, K. Piplits, R. Haubner, H. Hutter, Quantitative investigation of boron incorporation in polycrystalline CVD diamond films by SIMS, Fresenius J. Anal. Chem. 365 (1999) 636-641, http://dx.doi.org/10.1007/s002160051537. otwiera się w nowej karcie
  3. J. Ryl, A. Zielinski, L. Burczyk, R. Bogdanowicz, T. Ossowski, K. Darowicki, Chemical-assisted mechanical lapping of thin boron-doped diamond films: a fast route toward high electrochemical performance for sensing devices, Electrochim. Acta 242 (2017) 268-279, http://dx.doi.org/10.1016/j.electacta.2017.05.027. otwiera się w nowej karcie
  4. A. Zielinski, R. Bogdanowicz, J. Ryl, L. Burczyk, K. Darowicki, Local impedance imaging of boron-doped polycrystalline diamond thin films, Appl. Phys. Lett. 105 (2014) 131908, http://dx.doi.org/10.1063/1.4897346. otwiera się w nowej karcie
  5. D. Becker, K. Juttner, Influence of surface inhomogeneities of boron doped CVD- diamond electrodes on reversible charge transfer reactions, J. Appl. Electrochem. 33 (2003) 959-967, http://dx.doi.org/10.1023/A:1025872013482. otwiera się w nowej karcie
  6. D. Becker, K. Juttner, The impedance of fast charge transfer reaction on boron doped diamond electrodes, Electrochim. Acta 49 (2003) 29-39, http://dx.doi.org/ 10.1016/j.electacta.2003.04.003. otwiera się w nowej karcie
  7. N.R. Wilson, S.L. Clewes, M.E. Newton, P.R. Unwin, J.V. Macpherson, Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes, J. Phys. Chem. B 110 (2006) 5639-5646, http://dx.doi.org/10.1021/jp0547616. otwiera się w nowej karcie
  8. L.A. Hutton, J.G. Iacobini, E. Bitziou, R.B. Channon, M.E. Newton, J.V. Macpherson, Examination of the factors affecting the electrochemical performance of oxygen- terminated polycrystalline boron-doped diamond electrodes, Anal. Chem. 85 (2013) 7230-7240, http://dx.doi.org/10.1021/ac401042t. otwiera się w nowej karcie
  9. M.H.P. Santana, L.A. De Faria, J.F.C. Boodts, Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode, Electrochim. Acta 50 (2005) 2017-2027, http://dx.doi.org/10.1016/j.electacta.2004.08.050. otwiera się w nowej karcie
  10. M. Wang, N. Simon, C. Decorse-Pascnut, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Comparison of the chemical composition of boron- doped diamond surfaces upon different oxidation processes, Electrochim. Acta 54 (2009) 5818-5824, http://dx.doi.org/10.1016/j.electacta.2009.05.037. otwiera się w nowej karcie
  11. J. Ryl, R. Bogdanowicz, P. Slepski, M. Sobaszek, K. Darowicki, Dynamic electro- chemical impedance spectroscopy (DEIS) as a tool for analyzing surface oxidation processes on boron-doped diamond electrodes, J. Electrochem. Soc. 161 (2014) H359-H364, http://dx.doi.org/10.1149/2.016406jes. otwiera się w nowej karcie
  12. S. Carlos Oliveira, A.M. Oliveira-Bret, Voltammetric and electrochemical im- pedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode, Electrochim. Acta 55 (2010) 4599-4605, http://dx.doi. org/10.1016/j.electacta.2010.03.016. otwiera się w nowej karcie
  13. P.C. Ricci, A. Anedda, C.M. Carbonaro, F. Clemente, R. Corpino, Electrochemically induced surface modifications in boron-doped diamond films: a Raman spectro- scopy study, Thin Solid Films 482 (2005) 311-317, http://dx.doi.org/10.1016/j.tsf. 2004.11.169. otwiera się w nowej karcie
  14. T. Spataru, L. Preda, C. Munteanu, A.I. Caciuleanu, N. Spataru, A. Fujishima, Influence of boron-doped diamond surface termination on the characteristics of titanium dioxide anodically deposited in the presence of a surfactant, J. Electrochem. Soc. 162 (2015) H535-H540, http://dx.doi.org/10.1149/2. 0741508jes. otwiera się w nowej karcie
  15. D. Ballutaud, N. Simon, H. Girard, E. Rzepka, B. Bouchet-Fabre, Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface, Diam. Relat. Mater. 15 (2006) 716-719, http://dx.doi.org/10.1016/j.diamond.2006.01.004. otwiera się w nowej karcie
  16. H. Girard, E. de La Rochefoucauld, D. Ballataud, A. Etcheberry, N. Simon, Controlled anodic treatments on boron-doped diamond electrodes monitored by contact angle measurements, Electrochem. Solid-State Lett. 10 (2007) F34-F37, http://dx.doi.org/10.1149/1.2743824. otwiera się w nowej karcie
  17. H.B. Suffredini, V.A. Pedrosa, L. Codognoto, S.A.S. Machado, R.C. Rocha-Filho, L.A. Avaca, Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment, Electrochim. Acta 49 (2004) 4021-4026, http://dx.doi.org/10.1016/j.electacta.2004.01.082. otwiera się w nowej karcie
  18. P. Actis, A. Denoyelle, R. Boukherroub, S. Szunerits, Influence of the surface ter- mination on the electrochemical properties of boron-doped diamond (BDD) inter- faces, Electrochem. Commun. 10 (2008) 402-406, http://dx.doi.org/10.1016/j. elecom.2007.12.032. otwiera się w nowej karcie
  19. H. Girard, N. Simon, D. Ballutaud, M. Herlem, A. Etcheberry, Effect of Anodic and Cathodic Treatments on the charge transfer of boron doped diamond electrodes, Diam. Relat. Mater. 16 (2007) 316-325, http://dx.doi.org/10.1016/j.diamond. 2006.06.009. otwiera się w nowej karcie
  20. H. Girard, N. Simon, D. Ballutaud, E. de La Rochefoucauld, A. Etcheberry, Effects of controlled anodic treatments on electrochemical behaviour of boron doped dia- mond, Diam. Relat. Mater. 16 (2007) 888-891, http://dx.doi.org/10.1016/j. diamond.2006.12.002. otwiera się w nowej karcie
  21. T.N. Rao, D.A. Tryk, K. Hashimoto, A. Fujishima, Band-edge movements of semi- conducting diamond in aqueous electrolyte induced by anodic surface treatment, J. Electrochem. Soc. 146 (1999) 680-684, http://dx.doi.org/10.1149/1.1391662. otwiera się w nowej karcie
  22. E. Vanhove, J. de Sanoit, J.C. Arnault, S. Saada, C. Mer, P. Mailley, P. Bergonzo, M. Nesladek, Stability of H-terminated BDD electrodes: an insight into the influence of the surface preparation, Phys. Status Solidi A 204 (2007) 2931-2939, http://dx. doi.org/10.1002/pssa.200776340. otwiera się w nowej karcie
  23. R. Hoffmann, H. Obloh, N. Tokuda, N. Yang, C.E. Nebel, Fractional surface termi- nation of diamond by electrochemical oxidation, Langmuir 28 (2012) 47-50, http://dx.doi.org/10.1021/la2039366. otwiera się w nowej karcie
  24. T. Spataru, P. Osiceanu, M. Anastasescu, G. Patrinolu, C. Munteanu, N. Spataru, A. Fujishima, Effect of the chemical termination of conductive diamond substrate otwiera się w nowej karcie
  25. Fig. 3. High-resolution XPS spectra in the energy range of C1s measured for each in- vestigated sample. Table in the inset presents chemical analysis after deconvolution. on the resistance to carbon monoxide-poisoning during methanol oxidation of platinum particles, J. Power Sources 261 (2014) 86-92, http://dx.doi.org/10.1016/ j.jpowsour.2014.03.044. otwiera się w nowej karcie
  26. D.A. Tryk, K. Tsunozaki, T.N. Rao, A. Fujishima, Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of sur- face termination and near-surface hydrogen, Diam. Relat. Mater. 10 (2001) 1804-1809, http://dx.doi.org/10.1016/S0925-9635(01)00453-8. otwiera się w nowej karcie
  27. J. Svanberg-Larsson, G.W. Nelson, S. Escobar Steinvall, B.F. Leo, E. Brooke, D.J. Payne, J.S. Foord, A comparison of explicitly-terminated diamond electrodes decorated with gold nanoparticles, Electroanalysis 28 (2016) 88-95, http://dx.doi. org/10.1002/elan.201500442. otwiera się w nowej karcie
  28. I. Duo, A. Fujishima, Ch. Comninellis, Electron transfer kinetics on composite dia- mond (sp 3 )-graphite (sp 2 ) electrodes, Electrochem. Commun. 5 (2003) 695-700, http://dx.doi.org/10.1016/S1388-2481(03)00169-3. otwiera się w nowej karcie
  29. G.P. Morris, A.N. Simonov, E.A. Mashkina, R. Bordas, K. Gillow, R.E. Baker, D.J. Gavaghan, A.M. Bond, A comparison of fully automated methods of data analysis and computer assisted heuristic methods in an electrode kinetic study of the pathologically bariable [Fe(CN) 6 ] 3 −/4-process by AC voltammetry, Anal. Chem. 85 (2013) 11780-11787, http://dx.doi.org/10.1021/ac4022105. otwiera się w nowej karcie
  30. G.R. Salazar-Banda, K.I.B. Eguiluz, A.E. de Carvalho, L.A. Avaca, Ultramicroelectrode array behavior of electrochemically partially blocked boron- doped diamond surface, J. Braz. Chem. Soc. 24 (7) (2013) 1206-1211, http://dx. doi.org/10.5935/0103-5053.20130141. otwiera się w nowej karcie
  31. T.J. Davies, R.R. Moore, C.E. Banks, R.G. Compton, The cyclic voltammetric re- sponse of electrochemically heterogeneous surfaces, J. Electroanal. Chem. 574 (2004) 123-152, http://dx.doi.org/10.1016/j.jelechem.2004.07.031. otwiera się w nowej karcie
  32. T.J. Davies, C.E. Banks, R.G. Compton, Voltammetry at spatially heterogeneous electrodes, J. Solid State Electrochem. 9 (2005) 797-808, http://dx.doi.org/10. 1007/s10008-005-0699-x. otwiera się w nowej karcie
  33. K. Jüttner, D. Becker, Characterization of boron-doped diamond electrodes by electrochemical impedance spectroscopy, J. Appl. Electrochem. 37 (2006) 27-32, http://dx.doi.org/10.1007/s10800-006-9228-6. otwiera się w nowej karcie
  34. B.A. Brookes, T.J. Davies, A.C. Fisher, R.G. Evans, S.J. Wilkins, K. Yunus, J.D. Wadhawan, R.G. Compton, Computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part 1. Nonoverlapping, uniformly distributed blocking systems, J. Phys. Chem. B 107 (2003) 1616-1627, http://dx.doi.org/10.1021/jp021810v. otwiera się w nowej karcie
  35. R. Samlenski, C. Haug, R. Brenn, C. Wild, R. Locher, P. Koidl, Characterization and lattice location of nitrogen and boron in homoepitaxial CVD diamond, Diam. Relat. Mater. 5 (1996) 947-951, http://dx.doi.org/10.1016/0925-9635(95)00471-8. otwiera się w nowej karcie
  36. J.C. Richley, J.N. Harvey, M.N.R. Ashfold, Boron incorporation at a diamond sur- face: a QM/MM study of insertion and migration pathways during chemical vapor deposition, J. Phys. Chem. C 116 (2012) 18300-18307, http://dx.doi.org/10.1021/ jp305773d. otwiera się w nowej karcie
  37. Y.V. Pleskov, Y.E. Evstefeeva, M.D. Krotova, V.P. Varnin, I.G. Teremetskaya, Synthetic semiconductor diamond electrodes: Electrochemical behaviour of homoepitaxial boron-doped films orientated as (111), (110), and (100) faces, J. Electroanal. Chem. 595 (2006) 168-174, http://dx.doi.org/10.1016/j.jelechem. 2006.07.010. otwiera się w nowej karcie
  38. Y.V. Pleskov, Y.E. Evstefeeva, V.P. Varnin, I.G. Teremetskaya, Synthetic semi- conductor diamond electrodes: electrochemical characteristics of homoepitaxial boron-doped films grown at the (111), (110), and (100) faces of diamond crystals, Russ. J. Electrochem. 40 (2004) 886-892, http://dx.doi.org/10.1023/B:RUEL. 0000041354.70107.c8. otwiera się w nowej karcie
  39. J. Ryl, L. Burczyk, R. Bogdanowicz, M. Sobaszek, K. Darowicki, Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique, Carbon 96 (2016) 1093-1105, http:// dx.doi.org/10.1016/j.carbon.2015.10.064. otwiera się w nowej karcie
  40. M. Sobaszek, L. Skowronski, R. Bogdanowicz, K. Siuzdak, A. Cirocka, P. Zieba, M. Gnyba, M. Naparty, L. Golunski, P. Plotka, Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes, Opt. Mater. 42 (2015) 24-34, http://dx.doi.org/10.1016/j.optmat.2014.12.014. otwiera się w nowej karcie
  41. R. Bogdanowicz, M. Sawczak, P. Niedzialkowski, P. Zieba, B. Finke, J. Ryl, J. Karczewski, T. Ossowski, Novel functionalization of boron-doped diamond by microwave pulsed-plasma polymerized allylamine film, J. Phys. Chem. C 118 (2014) 8014-8025, http://dx.doi.org/10.1021/jp5003947. otwiera się w nowej karcie
  42. K. Siuzdak, R. Bogdanowicz, M. Sawczak, M. Sobaszek, Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy, Nanoscale 7 (2015) 551-558, http://dx.doi.org/10.1039/ c4nr04417g. otwiera się w nowej karcie
  43. R. Bogdanowicz, Characterization of optical and electrical properties of transparent conductive boron-doped diamond thin films grown on fused silica, Metrol. Meas. Syst. 21 (2014) 685-698, http://dx.doi.org/10.2478/mms-2014-0059. otwiera się w nowej karcie
  44. Z.L. Wang, C. Lu, J.J. Li, C.Z. Gu, Effect of gas composition on the growth and electrical properties of boron-doped diamond films, Diam. Relat. Mater. 18 (2009) 132-135, http://dx.doi.org/10.1016/j.diamond.2008.10.040. otwiera się w nowej karcie
  45. C.H. Goetling, F. Marken, A. Gutierrez-Sosa, R.G. Compton, J.S. Foord, Electrochemically induced surface modifications of boron-doped diamond elec- trodes: an X-ray photoelectron spectroscopy study, Diam. Relat. Mater. 9 (2000) 390-396, http://dx.doi.org/10.1016/S0925-9635(99)00267-8. otwiera się w nowej karcie
  46. L. Codognoto, S.A.S. Machado, L.A. Avaca, Square wave voltammetry on boron- doped diamond electrodes for analytical determinations, Diam. Relat. Mater. 11 (2002) 1670-1675, http://dx.doi.org/10.1016/S0925-9635(02)00134-6. otwiera się w nowej karcie
  47. L.S.C. Pingree, E.F. Martin, K.R. Shull, M.C. Hersam, Nanoscale impedance micro- scopy -a characterization tool for nanoelectronic devices and circuits, IEEE Trans. Nanotechnol. 4 (2005) 255, http://dx.doi.org/10.1109/TNANO.2004.837856. otwiera się w nowej karcie
  48. K. Darowicki, A. Zieliński, K.J. Kurzydłowski, Application of dynamic impedance spectroscopy to atomic force microscopy, Sci. Technol. Adv. Mater. 9 (2008) 045006 http://dx.doi.org/10.1088/1468-6996/9/4/045006. otwiera się w nowej karcie
  49. A. Zieliński, K. Darowicki, Implementation and validation of multisinusoidal, fast impedance measurements in atomic force microscope contact mode, Microsc. Microanal. 20 (2014) 974-981, http://dx.doi.org/10.1017/S1431927614000531. otwiera się w nowej karcie
  50. A. Yacoot, L. Koenders, Aspects of scanning force microscope probes and their ef- fects on dimensional measurement, J. Phys. D. Appl. Phys. 41 (2008) 103001 otwiera się w nowej karcie
  51. http://dx.doi.org/10.1088/0022-3727/41/10/103001. otwiera się w nowej karcie
  52. D. Medeiros de Araujo, P. Canizares, C.A. Martinez-Huitle, M.A. Rodrigo, Electrochemical conversion/combustion of a model organic pollutant on BDD anode: role of sp 3 /sp 2 ratio, Electrochem. Commun. 47 (2014) 37-40, http://dx. doi.org/10.1016/j.elecom.2014.07.017. otwiera się w nowej karcie
  53. M. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review, Carbon 99 (2016) 90-110, http://dx.doi.org/10.1016/j.carbon.2016.11.061. otwiera się w nowej karcie
  54. H. Li, T. Zhang, L. Li, X. Lu, B. Li, Z. Jin, G. Zou, Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films, J. Cryst. Growth 312 (2010) 1986-1991, http://dx.doi.org/10. 1016/j.jcrysgro.2010.03.020. otwiera się w nowej karcie
  55. S. Zhao, K. Larsson, Theoretical study of the energetic stability and geometry of terminated and B-doped diamond (111) surfaces, J. Phys. Chem. C 118 (2014) 1944-1957, http://dx.doi.org/10.1021/jp409278x. otwiera się w nowej karcie
  56. H. Girard, N. Simon, D. Ballutaud, A. Etcheberry, Correlation between flat-band potential position and oxygenated termination nature on boron-doped diamond electrodes, C. R. Chim. 11 (2008) 1010-1015, http://dx.doi.org/10.1016/j.crci. 2008.01.014. otwiera się w nowej karcie
  57. M. Wang, E. Simon, G. Charrier, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Distinction between surface hydroxyl and ether groups on boron-doped diamond electrodes using a chemical approach, Electrochem. Commun. 12 (2010) 351-354, http://dx.doi.org/10.1016/j.elecom. 2009.12.029. otwiera się w nowej karcie
  58. P. Niedzialkowski, R. Bogdanowicz, P. Zieba, J. Wysocka, J. Ryl, M. Sobaszek, T. Ossowski, Melamine-modified boron-doped diamond towards enhanced detec- tion of adenine, guanine and caffeine, Electroanalysis 28 (2015) 211-221, http:// dx.doi.org/10.1002/elan.201500528. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 137 razy

Publikacje, które mogą cię zainteresować

Meta Tagi