How to choose drive’s rated power in electrified urban transport? - Publikacja - MOST Wiedzy


How to choose drive’s rated power in electrified urban transport?


Selection of drive's rated power influences not only vehicle's dynamics, but also its energy efficiency. Mentioned above approach requires a multiphysical model, which covers both mechanical and electrical phenomena. This paper discusses how selection of traction drive's rated power influences vehicle energy consumption on example of a trolleybus. A complex mathematical model was developed in Matlab/Simulink to describe the multiphisical dependencies. Several driving scenarios were proposed to compare the energy consumption between trolleybuses equipped with medium- and high-power electric drive in different conditions. Numerical investigations reveal the possibility of gaining substantial energy savings using of the high-power drive.


  • 0


  • 3

    Web of Science

  • 0


Pełna treść

pobierz publikację
pobrano 61 razy


Copyright (2017 European Power Electronics and Drives Association & the Institute of Electrical and Electronics Engineers (IEEE))

Informacje szczegółowe

Aktywność konferencyjna
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) strony 1 - 10
Rok wydania:
Opis bibliograficzny:
Bartłomiejczyk M., Mirchevski S., Jarzębowicz L., Karwowski K..: How to choose drive’s rated power in electrified urban transport?, W: 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), 2017, IEEE,.
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.23919/epe17ecceeurope.2017.8098948
Bibliografia: test
  1. Mirchevski S.: Energy Efficiency in Electric Drives, Faculty of Electrical Engineering, ELECTRONICS, Vol. 16 No 1, June 2012, pp. 46-49 otwiera się w nowej karcie
  2. Weiller C., Neely A.: Using electric vehicles for energy services: Industry perspectives, Energy, vol. 77 (2014), pp. 194-200. otwiera się w nowej karcie
  3. Or owska-Kowalska T., Dybkowski M.: Industrial drive systems. Current state and development trends, Power Electronics and Drives, vol. 1 (36) no. 1, 2016, pp. 5-25. otwiera się w nowej karcie
  4. Bart omiejczyk M., Mirchevski S.: Reducing of energy consumption in public transport -results of experimental exploitation of super capacitor energy bank in Gdynia trolleybus system. Proc. 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, 21-24 Sept. 2014.
  5. Zhang D., Jiang J., Wang L. Y., Zhang W.: Robust and Scalable Management of Power Networks in Dual- Source Trolleybus Systems: A Consensus Control Framework, IEEE Transactions on Intelligent Transportation Systems, vol. 17 no. 4, 2016, pp. 1029-1038. otwiera się w nowej karcie
  6. Szumanowski A.: Hybrid Electric Power Train Engineering and Technology -Modeling, Control, and Simulation, Engineering Science Reference, IGI Global, 2013. otwiera się w nowej karcie
  7. Rajashekara K.: Present Status and Future Trends in Electric Vehicle Propulsion Technologies, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 1, 2013, pp. 3-10. otwiera się w nowej karcie
  8. Kuhne R.: Electric buses, an energy efficient urban transportation means, Energy, Vol. 35 (2010), pp. 4510- 4513. otwiera się w nowej karcie
  9. Scarpellini S., Valero A., Lera E., Aranda A.: Multicriteria analysis for the assessment of energy innovations in the transport sector, Energy, vol. 57 (2013), pp. 160-168. otwiera się w nowej karcie
  10. Abad G.: Power electronics and electric drives for traction applications. Wiley, 2017 otwiera się w nowej karcie
  11. Judek S., Skibicki J.: Evaluation of traction supply system electrical parameters for complex traffic condition using PSpice simulation program, Przeglad Elektrotechniczny, Vol. 85, Issue 12, pp. 270-273, 2009.
  12. Maciolek T., Szelag A., Methods of reducing the negative influence of weather phenomena, icing in particular, on the operation of an overhead catenary, Rocznik Ochrona Srodowiska, Vol.18, pp 640-651, Part: 2, 2016.
  13. Hruska M., Jara M.: High Efficiency and High Power Density Boost / Buck Converter with SiC JFET Modules for Advanced Auxiliary Power Supplies in Trolleybuses, Proc. PCIM Europe 2016, 10 -12 May 2016, Nuremberg, Germany.
  14. Jarzebowicz L.: Errors of a linear current approximation in high speed PMSM drives, IEEE Transactions on Power Electronics, vol. PP, no. 99, pp. 1-1, 2017. DOI: 10.1109/TPEL.2017.2694450. otwiera się w nowej karcie
  15. Sahoo S. K., Bhattacharya T.: Rotor Flux-Oriented Control of Induction Motor With Synchronized Sinusoidal PWM for Traction Application, IEEE Transactions on Power Electronics, vol. 31 no. 6, 2016, pp. 4429-4439. otwiera się w nowej karcie
  16. Jarzebowicz L., Karwowski K., Kulesza W.J., Sensorless algorithm for sustaining controllability of IPMSM drive in electric vehicle after resolver fault, Control Engineering Practice 58 (2017), pp. 117-126. otwiera się w nowej karcie
  17. Demmelmayr F., Troyer M., Schroedl M.: Advantages of PM-machines compared to induction machines in terms of efficiency and sensorless control in traction applications. Proc. 37th Annual Conference on IEEE Industrial Electronics Society IECON, 2011, pp. 2762-2768. otwiera się w nowej karcie
  18. Mahmoudi A.; Wen L. Soong; Gianmario Pellegrino; otwiera się w nowej karcie
  19. Eric Armando: Efficiency maps of electrical machines, Proc IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 2791 -2799.
Politechnika Gdańska

wyświetlono 31 razy

Publikacje, które mogą cię zainteresować

Meta Tagi