Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea) - Publikacja - MOST Wiedzy


Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea)


Coastal basins are particularly exposed to the adverse impact of anthropogenic stress. In many places, despite only the seasonal increase in the number of residents, progressive urbanization and associated changes in the catchment characteristics are noticeable. Puck Bay is part of the Gulf of Gdansk and belongs to the Baltic Sea. Although the area of Puck Bay is covered by the Natura 2000 Network, this has not saved it from eutrophication problems. As part of the work on a complex coastal basin analysis (WaterPUCK project), the Soil and Water Assessment Tool (SWAT) model was used to determine the agricultural impact on water quality in rivers with a flow into Puck Bay: Reda, Gizdepka, Płutnica, and Bł ˛adzikowski Stream. The results include the loads of nutrients and pesticides that flow out from the agricultural areas of Puck community into Puck Bay. In this article, special attention has been paid to the impact of precipitation on the quality of water at the outflow of rivers into the Bay of Puck, because it is a decisive element in the amount of nutrients leached along with surface runoff to watercourses and then into the Gulf. The distribution of precipitation thus affects the amount of nutrients absorbed by plants. Modeling the effects of agricultural practices, taking into account long-term meteorological forecasts, is helpful in attempts to reduce the amount of pollutants entering the Baltic Sea.


  • 4


  • 2

    Web of Science

  • 3


Cytuj jako

Pełna treść

pobierz publikację
pobrano 22 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Water nr 12, strony 1 - 13,
ISSN: 2073-4441
Rok wydania:
Opis bibliograficzny:
Kalinowska D., Wielgat P., Kolerski T., Zima P.: Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea)// Water -Vol. 12,iss. 3 (2020), s.1-13
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/w12030809
Bibliografia: test
  1. Nausch, G.; Aertebjerg, G. Anthropogenic Nutrient Load of the Baltic Sea. Limnologica 1999, 29, 233-241. [CrossRef] otwiera się w nowej karcie
  2. San, P.; Rahm, L. Nutrient Trends in the Baltic Sea. Environmetrics 1993, 4, 75-103. [CrossRef] otwiera się w nowej karcie
  3. Council Directive. Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC). Available online: 31991L0676&from=EN (accessed on 15 December 2019). otwiera się w nowej karcie
  4. Granéli, E.; Wallström, K.; Larsson, U.; Granéli, W.; Elmgren, R. Nutrient limitation of primary production in the Baltic Sea Area. AMBIO 1990, 19, 142-151. otwiera się w nowej karcie
  5. Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. Effects of implementation of nitrates directive on nitrogen emissions in the European Union. Sci. Total Environ. 2014, 468-469, 1225-1233. [CrossRef] [PubMed] otwiera się w nowej karcie
  6. Andersen, J.H.; Fossing, H.; Hansen, J.W.; Manscher, O.H.; Murray, C.; Petersen, D.L. Nitrogen inputs from agriculture: Towards better assessments of eutrophication status in marine waters. Ambio 2014, 43, 906-913. [CrossRef] [PubMed] otwiera się w nowej karcie
  7. Chen, Y.; Cvetkovic, V.; Destouni, G. Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea. Water 2019, 11, 1407. [CrossRef] otwiera się w nowej karcie
  8. Murray, C.J.; Muller-Karulis, B.; Carstensen, J.; Conley, D.J.; Gustafsson, B.; Andersen, J.H. Past, Present and Future Eutrophication Status of the Baltic Sea. Front. Mar. Sci. 2019, 6, 2. [CrossRef] otwiera się w nowej karcie
  9. Węsławski, J.M.; Kryla-Straszewska, L.; Piwowarczyk, J.; Urbański, J.; Warzocha, J.; Kotwicki, L.; Włodarska-Kowalczuk, M.; Wiktor, J. Habitat modelling limitations-Puck Bay, Baltic Sea-A case study. Oceanologia 2013, 55, 167-183. [CrossRef] otwiera się w nowej karcie
  10. Zima, P. Simulation of the impact of pollution discharged by surface waters from agricultural areas on the water quality of Puck Bay, Baltic Sea. Euro-Mediterr. J. Environ. Integr. 2019, 4, 16. [CrossRef] otwiera się w nowej karcie
  11. Carstensen, J.; Conley, D.J.; Almroth-Rosell, E.; Asmala, E.; Bonsdorff, E.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Gustafsson, C.; Heiskanen, A.S.; Janas, U.; et al. Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio 2019. [CrossRef] otwiera się w nowej karcie
  12. Kruk-Dowgiałło, L.; Szaniawska, A. Gulf of Gdańsk and Puck Bay. In Ecology of Baltic Coastal Waters. Ecological Studies (Analysis and Synthesis); Springer: Berlin/Heidelberg, Germany, 2008; pp. 139-165. otwiera się w nowej karcie
  13. Pędziński, J.; Witak, M. Evidence of cultural eutrophication of the Gulf of Gdańsk based on diatom analysis. Oceanol. Hydrobiol. Stud. 2019, 48, 247-261. [CrossRef] otwiera się w nowej karcie
  14. Piniewski, M.; Kardel, I.; Giełczewski, M.; Marcinkowski, P.; Okruszko, T. Adapting Polish Agriculture to Reduce Future Nutrient Loads in a Coastal Watershed. Ambio 2014, 43, 644-660. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Wojciechowska, E.; Nawrot, N.; Matej-Łukowicz, K.; Gajewska, M.; Obarska-Pempkowiak, H. Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Supply 2019, 19, 986-994. [CrossRef] otwiera się w nowej karcie
  16. Wojciechowska, E.; Pietrzak, S.; Matej-Łukowicz, K.; Nawrot, N.; Zima, P.; Kalinowska, D.; Wielgat, P.; Obarska-Pempkowiak, H.; Gajewska, M.; Dembska, G.; et al. Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. J. Environ. Manag. 2019, 252, 109637. [CrossRef] otwiera się w nowej karcie
  17. Potrykus, D.; Gumuła-Kawęcka, A.; Jaworska-Szulc, B.; Pruszkowska-Caceres, M.; Szymkiewicz, A. Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method. E3S Web Conf. 2018, 44, 147. [CrossRef] otwiera się w nowej karcie
  18. Nguyen, H.H.; Recknagel, F.; Meyer, W. Effects of projected urbanization and climate change on flow and nutrient loads of a Mediterranean catchment in South Australia. Ecohydrol. Hydrobiol. 2019, 19, 279-288. [CrossRef] otwiera się w nowej karcie
  19. Tamm, O.; Maasikamäe, S.; Padari, A.; Tamm, T. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. Catena 2018, 167, 78-89. [CrossRef] otwiera się w nowej karcie
  20. Ballard, T.C.; Sinha, E.; Michalak, A.M. Long-term Changes in Precipitation and Temperature Have Already Impacted Nitrogen Loading. Environ. Sci. Technol. 2019, 53, 5080-5090. [CrossRef] otwiera się w nowej karcie
  21. Donnelly, C.; Yang, W.; Dahné, J. River discharge to the Baltic Sea in a future climate. Clim. Chang. 2014, 122, 157-170. [CrossRef] otwiera się w nowej karcie
  22. Smith, R.; Gent, P. Reference Manual for the Parallel Ocean Program (POP);
  23. Dzierzbicka-Glowacka, L.; Janecki, M.; Szymczycha, B.; Dybowski, D.; Nowicki, A.; Kłostowska,Ż.; Obarska-Pempkowiak, H.; Zima, P.; Jaworska-Szulc, B.; Jakacki, J.; et al. Integrated Information and Prediction Web Service WaterPUCK General Concept. MATEC Web Conf. 2018, 210, 2011. [CrossRef] otwiera się w nowej karcie
  24. Interdisciplinary Centre for Mathematical and Computationalof Modelling UW, Weather Forecast. Available online: (accessed on 15 December 2019). otwiera się w nowej karcie
  25. Web Services WaterPuck. Available online: (accessed on 15 December 2019). otwiera się w nowej karcie
  26. Sun, C.; Ren, L. Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Hydrol. Process. 2014, 28, 2478-2498. [CrossRef] otwiera się w nowej karcie
  27. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation Version 2012 Soil & Water Assessment Tool; Texas Water Resources Institute: College Station, TX, USA, 2012.
  28. Institute of Meteorology and Water Management, Measurement and Observational Data. Available online: (accessed on 15 December 2019). otwiera się w nowej karcie
  29. Kalinowska, D.; Wielgat, P.; Kolerski, T.; Zima, P. Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District. E3S Web Conf. 2018, 63, 5. [CrossRef] otwiera się w nowej karcie
  30. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491-1508. [CrossRef] otwiera się w nowej karcie
  31. Cao, W.; Bowden, W.B.; Davie, T.; Fenemor, A. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol. Process. 2006, 20, 1057-1073. [CrossRef] otwiera się w nowej karcie
  32. Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [CrossRef] otwiera się w nowej karcie
  33. Zhang, D.; Chen, X.; Yao, H.; Lin, B. Improved calibration scheme of SWAT by separating wet and dry seasons. Ecol. Model. 2015, 301, 54-61. [CrossRef] otwiera się w nowej karcie
  34. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Wiliams, J.R. Soil and Water Assessment Tool, Theoretical Documentation, Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2009; Available online: media/99192/swat2009-theory.pdf (accessed on 15 December 2019). otwiera się w nowej karcie
  35. Pazikowska-Sapota, G.; Galer-Tatarowicz, K.; Dembska, G.; Wojtkiwicz, M.; Duljas, E.; Pietrzak, S.; Dzierzbicka-Glowacka, L. The impact of pesticides used at the agricultural land of the Puck commune on the environment of the Puck Bay. PeerJ 2020. under review. otwiera się w nowej karcie
  36. Elmgren, R.; Larsson, U. Nitrogen and the Baltic Sea: Managing Nitrogen in Relation to Phosphorus. Sci. World J. 2001, 1, 371-377. [CrossRef] otwiera się w nowej karcie
  37. Stepanauskas, R.; JØrgensen, N.O.; Eigaard, O.R.; Žvikas, A.; Tranvik, L.J.; Leonardson, L. Summer Inputs of Riverine Nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecol. Monogr. 2002, 72, 579-597. [CrossRef] otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 27 razy

Publikacje, które mogą cię zainteresować

Meta Tagi