Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches - Publikacja - MOST Wiedzy

Wyszukiwarka

Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

Abstrakt

This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

Cytowania

  • 3 7

    CrossRef

  • 0

    Web of Science

  • 3 5

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 211 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
CONTINUUM MECHANICS AND THERMODYNAMICS nr 31, strony 147 - 188,
ISSN: 0935-1175
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Chróścielewski J., Schmidt R., Eremeev V.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches// CONTINUUM MECHANICS AND THERMODYNAMICS. -Vol. 31, iss. 1 (2019), s.147-188
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00161-018-0672-4
Bibliografia: test
  1. Robbins, D.H., Reddy, J.N.: Analysis of piezoelectrically actuated beams using a layer-wise displacement theory. Comput. Struct. 41, 265-279 (1991) otwiera się w nowej karcie
  2. Krommer, M.: On the correction of the Bernoulli-Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10(4), 668 (2001) otwiera się w nowej karcie
  3. Maurini, C., dell'Isola, F., Pouget, J.: On models of layered piezoelectric beams for passive vibration control. J. Phys. IV 115, 307-316 (2004) otwiera się w nowej karcie
  4. Maurini, C., Pouget, J., dell'Isola, F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16), 4473-4502 (2004) otwiera się w nowej karcie
  5. dell'Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Contin. Mech. Thermodyn. 9(2), 115-125 (1997) otwiera się w nowej karcie
  6. Mindlin, R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23(1), 83-88 (1952) otwiera się w nowej karcie
  7. Lee, C.-K.: Piezoelectric laminates: theory and experiments for distributed sensors and actuators. In: Tzou, H.S., Anderson, G.L. (eds.) Intelligent Structural Systems, pp. 75-167. Kluwer Academic Publishers, Dordrecht-Boston-London (1992) otwiera się w nowej karcie
  8. Yang, J.S., Batra, R.C., Liang, X.Q.: The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Mater. Struct. 3, 1-9 (1994) otwiera się w nowej karcie
  9. Ghosh, K., Batra, R.C.: Shape control of plates using piezoceramic elements. AIAA J. 33, 1354-1357 (1995) otwiera się w nowej karcie
  10. Carrera, E.: An improved Reissner-Mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers. J. Intell. Mater. Syst. Struct. 8(3), 232-248 (1997) otwiera się w nowej karcie
  11. Carrera, E., Boscolo, M.: Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates. Int. J. Numer. Meth. Eng. 70, 1135-1181 (2007) otwiera się w nowej karcie
  12. Maurini, C., Pouget, J., dell'Isola, F.: Extension of the Euler-Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22), 1438-1458 (2006) otwiera się w nowej karcie
  13. Alessandroni, S., Andreaus, U., dell'Isola, F., Porfiri, M.: Piezo-electromechanical (PEM) Kirchhoff-Love plates. Eur. J. Mech.-A/Solids 23(4), 689-702 (2004) otwiera się w nowej karcie
  14. Rosi, G., Pouget, J., dell'Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech.-A/Solids 29(5), 859-870 (2010) otwiera się w nowej karcie
  15. Rogacheva, N.N.: Equations of state of piezoceramic shells. J. Appl. Math. Mech. 45(5), 677-684 (1981) otwiera się w nowej karcie
  16. Rogacheva, N.: The Theory of Piezoelectric Plates and Shells, p. 260. CRC Press, Boca Raton (1994)
  17. Le, K.C.: An asymptotically exact theory of functionally graded piezoelectric shells. Int. J. Eng. Sci. 112, 42-62 (2017) otwiera się w nowej karcie
  18. Vetyukov, Y., Staudigl, E., Krommer, M.: Hybrid asymptotic-direct approach to finite deformations of electromechanically coupled piezoelectric shells. Acta Mech. 229(2), 953-974 (2018) otwiera się w nowej karcie
  19. Kulikov, G.M., Plotnikova, S.V.: Exact electroelastic analysis of functionally graded piezoelectric shells. Int. J. Solids Struct. 51(1), 13-25 (2014) otwiera się w nowej karcie
  20. Lammering, R.: The application of finite shell element for composites containing piezo-electric polymers in vibration control. Comput. Struct. 41, 1101-1109 (1991) otwiera się w nowej karcie
  21. Tzou, H.S., Tseng, C.I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems: Finite element formulation and application. Mech. Syst. Signal Process. 5, 215-231 (1991) otwiera się w nowej karcie
  22. Tzou, H.S.: Piezoelectric Shells-Distributed Sensing and Control of Continua. Kluwer Academic Publishers, Dordrecht- Boston-London (1993) otwiera się w nowej karcie
  23. Tzou, H.S., Ye, R.: Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J. 34, 110-115 (1996) otwiera się w nowej karcie
  24. Carrera, E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56(2), 287-308 (2003) otwiera się w nowej karcie
  25. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, Chichester (2011) otwiera się w nowej karcie
  26. Carrera, E., Brischetto, S., Nali, P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modelling and Analysis. Wiley, Chichester (2011) otwiera się w nowej karcie
  27. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283-291 (2014) otwiera się w nowej karcie
  28. Naumenko, K., Eremeyev, V.A.: A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Compos. Struct. 178, 434-446 (2017) otwiera się w nowej karcie
  29. Icardi, U., Di Sciuva, M.: Large-deflection and stress analysis of multilayered plates with induced-strain actuators. Smart Mater. Struct. 5, 140-164 (1996) otwiera się w nowej karcie
  30. Mukherjee, A., Chaudhuri, A.S.: Piezolaminated beams with large deformations. Int. J. Solids Struct. 39, 4567-4582 (2002) otwiera się w nowej karcie
  31. Lentzen, S., Schmidt, R.: Nonlinear finite element modelling of composite structures with integrated piezoelectric layers. In: Brebbia, C.A., de Wilde, W.P. (eds.) High Performance Structures and Materials II, pp. 67-76. WIT Press, Southampton- Boston (2004)
  32. Lentzen, S., Schmidt, R.: Simulation of sensor application and shape control of piezoelectric structures at large deflections. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Advances in Computational & Experimental Engineering & Science, pp. 439-444. Tech Science Press, Encino (2004)
  33. Lentzen, S., Schmidt, R.: Nonlinear shape control simulation of piezolaminated plates and shells. In: Yao, Z.H., Yuan, M.W., Zhong, W.X. (eds.) Computational Mechanics, Proceedings of the Sixth International Congress of Computational Mechanics, Beijing, China, vol. 2, paper R-304, Tsinghua University Press/Springer-Verlag (2004) otwiera się w nowej karcie
  34. Lentzen, S., Schmidt, R.: On piezoelectric actuator layers in plates and shells at large deflections. In: Yang, W. (ed.) IUTAM Symposium "Mechanics and Reliability of Actuating Materials", Beijing, China, 1-3 September 2004, 154-163. Springer, Dordrecht (2006) otwiera się w nowej karcie
  35. Lentzen, S., Schmidt, R.: Nonlinear FE-simulation of piezolaminated plates and shells. In: Iyengar, N.G.R., Kumar, A. (eds.) Proceedings, International Congress on Computational Mechanics & Simulation, vol. I, pp. 77-85. Indian Institute of Technology Kanpur (2004) otwiera się w nowej karcie
  36. Vu, T.D., Lentzen, S., Schmidt, R.: Geometrically nonlinear FE-analysis of piezolaminated plates based on first-and third- order shear deformation theory. In: Son, N.K., Cat, P.T., Tuan, P.A. (eds.) Proceedings of the 8 th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8-12 November 2004, pp. 267-272. Vietnam National University Publisher, Hanoi (2004)
  37. Nguyen, Q.D., Lentzen, S., Schmidt, R.: A geometrically nonlinear third-order shear deformation finite plate element incor- porating piezoelectric layers. In: Son, N.K., Cat, P.T., Tuan, P.A. (eds.) Proceedings of the 8 th International Conference on Mechatronics Technology, ICMT 2004, Hanoi, Vietnam, 8-12 November 2004, pp. 303-308/ Vietnam National University Publisher, Hanoi (2004)
  38. Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R., Qin, X.S.: Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures. Smart Struct. Syst. 19(6), 633-641 (2017) otwiera się w nowej karcie
  39. Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z., Schmidt, R.: Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators. Compos. Struct. 150, 62-72 (2016) otwiera się w nowej karcie
  40. Zhang, S.Q., Schmidt, R., Müller, P.C., Qin, X.S.: Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation. J. Sound Vib. 353, 19-37 (2015) otwiera się w nowej karcie
  41. Zhang, S.Q., Li, H.N., Schmidt, R., Müller, P.C.: Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures. J. Sound Vib. 333(5), 1209-1223 (2014) otwiera się w nowej karcie
  42. Zhang, S.Q., Li, Y.X., Schmidt, R.: Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities. Compos. Struct. 1(122), 239-249 (2015) otwiera się w nowej karcie
  43. Krishna, M.R.M., Mei, C.: Finite element buckling and post-buckling analyses of a plate with piezoelectric actuator. In: Rogers, C.A., Rogers, R.C. (eds.) Proceedings of the Conference on Recent Advances in Adaptive and Sensory Materials and Their Applications, Virginia Polytechnic Institute and State University, Blacksburg, 1992, pp. 301-313. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1992) otwiera się w nowej karcie
  44. Chandrashekhara, K., Bhatia, K.: Active buckling control of smart composite plates-finite-element analysis. Smart Mater. Struct. 2, 31-39 (1993) otwiera się w nowej karcie
  45. Wang, Q., Varadan, V.K.: Transition of the buckling load of beams by the use of piezoelectric layers. Smart Mater. Struct. 12, 696-702 (2003) otwiera się w nowej karcie
  46. Chróscielewski, J., Klosowski, P., Schmidt, R.: Theory and numerical simulation of nonlinear vibration control of arches with piezoelectric distributed actuators. Mach. Dyn. Probl. 20, 73-90 (1998)
  47. Lentzen, S., Schmidt, R.: Geometrically nonlinear composite shells with integrated piezoelectric layers. Proc. Appl. Math. Mech. 4, 63-66 (2004) otwiera się w nowej karcie
  48. Tzou, H.S., Bao, Y., Ye, R.: In: Hagood, N.W. (ed.) Smart Structures and Materials 1994: Smart Structures and Intelligent Systems, Proceeding of SPIE, vol. 2190, pp. 206-214 (1994) otwiera się w nowej karcie
  49. Pai, P.F., Nayfeh, A.H., Oh, K., Mook, D.T.: A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. Int. J. Solids Struct. 30, 1603-1630 (1993) otwiera się w nowej karcie
  50. Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21, 568-593 (1999) otwiera się w nowej karcie
  51. Oh, I.-K., Han, J.-H., Lee, I.: Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectic loads. J. Sound Vib. 233, 19-40 (2000) otwiera się w nowej karcie
  52. Oh, I.-K., Han, J.-H., Lee, I.: Thermopiezoelastic snapping of piezolaminated plates using layerwise nonlinear finite elements. AIAA J. 39, 1188-1197 (2001) otwiera się w nowej karcie
  53. Yi, S., Ling, S.F., Ying, M.: Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators. Finite Elem. Anal. Des. 35, 1-15 (2000) otwiera się w nowej karcie
  54. Mukherjee, A., Chaudhuri, A.S.: Nonlinear dynamic response of piezolaminated smart beams. Comput. Struct. 83, 1289- 1304 (2005) otwiera się w nowej karcie
  55. Lentzen, S., Schmidt, R.: Nonlinear finite element modeling of vibration control of piezolaminated composite plates and shells. In: Wang, K.-W. (ed.) Smart Structures and Materials 2005: Damping and Isolation, Proceedings of SPIE, vol. 5760, Paper 5760-16, SPIE, Bellingham, WA, USA (2005) otwiera się w nowej karcie
  56. Lentzen, S., Schmidt, R.: A geometrically nonlinear finite element for transient analysis of piezolaminated shells. In: van Campen, D.H., Lazurko, M.D., van den Oever, W.P.J.M. (eds.) Proceedings Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands, 7-12 August 2005, pp. 2492-2500. Eindhoven University of Technology (2005) otwiera się w nowej karcie
  57. Lentzen, S., Schmidt, R.: Large amplitude vibrations and modal sensing of intelligent thin piezolaminated structures. In: Soize, C., Schuëller, G.I. (eds.) EURODYN 2005, Proceedings of the 6th European Conference on Structural Dynamics, Paris, France, 4-7 September 2005, pp. 1569-1574, Millpress, Rotterdam (2005) otwiera się w nowej karcie
  58. Lentzen, S., Schmidt, R.: Nonlinear transient analysis, vibration control and modal sensing of smart piezolaminated shells. In: Sivakumar, S.M., Meher Prasad, A., Dattaguru, B., Narayanan, S., Rajendran, A.M., Atluri, S.N. (eds.) Advances in Computational & Experimental Engineering and Science, pp. 2062-2067. Tech Science Press, Encino, California, USA (2005) otwiera się w nowej karcie
  59. Zhang, S.Q., Schmidt, R.: Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations. Compos. Struct. 112, 345-357 (2014) otwiera się w nowej karcie
  60. Rao, J.N., Lentzen, S., Schmidt, R.: Genetically optimised placement of piezoelectric sensor arrays: linear and nonlin- ear transient analysis. In: Brebbia, C.A. (ed.) High-Performance Structures and Materials III, pp. 653-661. WIT Press, Southampton-Boston (2006) otwiera się w nowej karcie
  61. Shi, G., Atluri, S.N.: Active control of nonlinear dynamic response of space-frames using piezo-electric actuators. Comput. Struct. 34, 549-564 (1990) otwiera się w nowej karcie
  62. Lee, S.-W., Beale, D.G.: Active control of nonlinear oscillations in a flexible rod slider crank mechanism. In: Burdisso, R.A. (ed.) Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration, Virginia Polytechnic Institute and State University, Blacksburg, 1993, pp. 729-740. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1993)
  63. Zhou, Y.-H., Wang, J.: Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation. Int. J. Non-Linear Mech. 39, 909-920 (2004) otwiera się w nowej karcie
  64. Chróscielewski, J., Klosowski, P., Schmidt, R.: Numerical simulation of geometrically nonlinear flexible beam control via piezoelectric layers. ZAMM 77(Supplement 1), S69-S70 (1997)
  65. Chróscielewski, J., Klosowski, P., Schmidt, R.: Modelling and FE-analysis of large deflection shape and vibration control of structures via piezoelectric layers. In: Gabbert, U. (ed.) Smart Mechanical Systems-Adaptronics, Fortschritt-Berichte VDI, Series 11, No. 244, pp. 53-62. VDI-Verlag, Düsseldorf (1997)
  66. Tzou, H.S., Zhou, Y.-H.: Dynamics and control of piezoelectric circular plates with geometrical nonlinearity. J. Sound Vib. 188, 189-207 (1995) otwiera się w nowej karcie
  67. Tzou, H.S., Zhou, Y.-H.: Nonlinear piezothermoelasticity and multi-field actuation, part 2: control of nonlinear buckling and dynamics. ASME J. Vib. Acoust. 19, 382-389 (1997) otwiera się w nowej karcie
  68. Zhou, Y.-H., Tzou, H.S.: Active control of nonlinear piezoelectric spherical shallow shells. Int. J. Solids Struct. 37, 1663- 1677 (2000) otwiera się w nowej karcie
  69. Batra, R.C., Liang, X.Q., Kachroo, P.: Shape control of a nonlinear smart plate. In: Varadan, V.V., Chandra, J. (eds.) Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, pp. 518-525 (1997) otwiera się w nowej karcie
  70. Batra, R.C., Liang, X.Q.: Finite dynamic deformations of smart structures. Comput. Mech. 20, 427-438 (1997) otwiera się w nowej karcie
  71. Lai, Z., Xue, D.Y., Huang, J.-K., Mei, C.: Nonlinear panel flutter suppression with piezoelectric actuation. In: Burdisso, R.A. (ed.) Proceedings of the Second Conference on Recent Advances in Active Control of Sound and Vibration, Virginia Polytechnic Institute and State University, Blacksburg, 1993, pp. 863-874. Technomic Publishing Company Inc, Lancaster, Pennsylvania (1993) otwiera się w nowej karcie
  72. Zhou, R.C., Lai, Z., Xue, D.Y., Huang, J.-K., Mei, C.: Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method. AIAA J. 33, 1098-1105 (1995) otwiera się w nowej karcie
  73. Zhou, R.C., Mei, C., Huang, J.-K.: Suppression of nonlinear panel flutter at supersonic speeds and elevated temperatures. AIAA J. 34, 347-354 (1996) otwiera się w nowej karcie
  74. Shen, J.Y., Sharpe, L., Jr.: A finite element model for the aeroelasticity analysis of hypersonic panels, part III: flutter suppression. In: Varadan, V.V., Chandra, J. (eds.) Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, pp. 315-323 (1997) otwiera się w nowej karcie
  75. Zhang, S.Q., Zhao, G.Z., Zhang, S.Y., Schmidt, R., Qin, X.S.: Geometrically nonlinear FE analysis of piezoelectric laminated composite structures under strong driving electric field. Compos. Struct. 1(181), 112-120 (2017) otwiera się w nowej karcie
  76. Rao, M.N., Tarun, S., Schmidt, R., Schröder, K.U.: Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields. Smart Mater. Struct. 25(5), 055044 (2016) otwiera się w nowej karcie
  77. Xin, L., Hu, Z.: Free vibration of layered magneto-electro-elastic beams by SS-DSC approach. Compos. Struct. 125, 96-103 (2015) otwiera się w nowej karcie
  78. Rao, M.N., Schmidt, R., Schröder, K.U.: Geometrically nonlinear static FE-simulation of multilayered magneto-electro- elastic composite structures. Compos. Struct. 127, 120-131 (2015) otwiera się w nowej karcie
  79. Giorgio, I., Galantucci, L., Della, Corte A., Del Vescovo, D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051-1084 (2015) otwiera się w nowej karcie
  80. Andreaus, U., dell'Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. JVC/J. Vib. Control, 10(5), 625-659 (2004) . https://doi.org/10.1177/1077546304038224 otwiera się w nowej karcie
  81. Alessandroni, S., Andreaus, U., dell'Isola, F., Porfiri, M.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83(15-16), 1236-1250 (2005). https://doi.org/10.1016/j.compstruc.2004.08.028 otwiera się w nowej karcie
  82. Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79, 859-879 (2009) otwiera się w nowej karcie
  83. Pagnini, L.C., Piccardo, G.: The three-hinged arch as an example of piezomechanic passive controlled structure. Contin. Mech. Thermodyn. 28, 1247 (2016). https://doi.org/10.1007/s00161-015-0474-x otwiera się w nowej karcie
  84. D'Annibale, F., Rosi, G., Luongo, A.: On the failure of the 'similar piezoelectric control' in preventing the loss of stability caused by nonconservative positional forces. Z. Angew. Math. Phys. 66(4), 1949-1968 (2015) otwiera się w nowej karcie
  85. D'Annibale, F.: Piezoelectric control of the Hopf bifurcation of Ziegler's column with nonlinear damping. Nonlinear Dyn. 86, 2179 (2016). https://doi.org/10.1007/s11071-016-2866-2 otwiera się w nowej karcie
  86. Šilhavý, M.: A direct approach to nonlinear shells with application to surface-substrate interactions. Math. Mech. Complex Syst. 1(2), 211-232 (2013). https://doi.org/10.2140/memocs.2013.1.211 otwiera się w nowej karcie
  87. Girchenko, A.A., Eremeyev, V.A., Altenbach, H.: Interaction of a helical shell with a nonlinear viscous fluid. Int. J. Eng. Sci. 61, 53-58 (2012) otwiera się w nowej karcie
  88. Sze, K.Y., Yao, L.Q.: Modelling smart structures with segmented piezoelectric sensors and actuators. J. Sound Vib. 35, 495-520 (2000) otwiera się w nowej karcie
  89. Sze, K.Y., Yao, L.Q., Yi, S.: A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II: smart structure modeling. Int. J. Numer. Meth. Eng. 48, 565-582 (2000) otwiera się w nowej karcie
  90. Balamurugan, V., Nayaranan, S.: Active vibration control of smart shells using distributed piezoelectric sensors and actuators. Smart Mater. Struct. 10, 173-180 (2001) otwiera się w nowej karcie
  91. Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal com- posites. J. Intell. Mater. Syst. Struct. 22(16), 1887-1897 (2011) otwiera się w nowej karcie
  92. Del Bufalo, G., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008) otwiera się w nowej karcie
  93. Tiersten, H.F.: Hamilton's principle for linear piezoelectric media. Proc. IEEE 55(8), 1523-1526 (1967) otwiera się w nowej karcie
  94. Allik, H., Hughes, T.J.: Finite element method for piezoelectric vibration. Int. J. Numer. Meth. Eng. 2(2), 151-158 (1970) otwiera się w nowej karcie
  95. McMeeking, R.M., Landis, C.M., Jimenez, S.M.: A principle of virtual work for combined electrostatic and mechanical loading of materials. Int. J. Non-Linear Mech. 42(6), 831-838 (2007) otwiera się w nowej karcie
  96. Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics. Springer, Singa- pore (2017)
  97. Lammering, R., Mesecke-Rischmann, S.: Multi-field variational formulations and related finite elements for piezoelectric shells. Smart Mater. Struct. 12(6), 904-913 (2003) otwiera się w nowej karcie
  98. Belokon, A.V., Eremeyev, V.A., Nasedkin, A.V., Solov'yev, A.N.: Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J. Appl. Math. Mech. 64(3), 367-377 (2000) otwiera się w nowej karcie
  99. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878-892 (2014) otwiera się w nowej karcie
  100. Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoulped and coupled surface effects. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 1-18. Springer, Singapore (2017) otwiera się w nowej karcie
  101. Abali, B.E., Reich, F.A.: Thermodynamically consistent derivation and computation of electro-thermo-mechanical systems for solid bodies. Comput. Methods Appl. Mech. Eng. 319, 567-595 (2017) otwiera się w nowej karcie
  102. Waszczyszyn, Z., Cichoń, Cz, Radwańska, M.: Stability of Structures by Finite Element Methods. Elsevier, Amsterdam (1994) otwiera się w nowej karcie
  103. Riks, E.: On the Numerical Solution of Snapping Problems in the Theory of Elastic Stability, SUDAAR 401. Stanford University, Stanford (1970) otwiera się w nowej karcie
  104. Riks, E.: The application of Newton's method to the problem of elastic stability. Trans. ASME J. Appl. Mech. 39, 1060-1065 (1972) otwiera się w nowej karcie
  105. Wempner, G.: Discrete approximations related to nonlinear theories of solids. Int. J. Solids Struct. 7, 1581-1599 (1971) otwiera się w nowej karcie
  106. Chróścielewski, J., Nolte, L.-P.: Strategien zur Lösung nichtlinearer Probleme der Strukturmechanik und ihre modulare Aufbereitung im Konzept MESY, Mitt. Institut für Mechanik, 48, Ruhr-Universität, Bochum (1985)
  107. Chróścielewski, J., Schmidt, R.: A solution control method for nonlinear finite element post-buckling analysis of struc- tures. In: Szabó, J. (ed.) Post-Buckling of Elastic Structures, Proc. of the EUROMECH-Colloquium Nr. 200, Mátrafüred (Hungary), 1985, pp. 19-33. Elsevier Science Publisher B.V., Amsterdam (1986) otwiera się w nowej karcie
  108. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM, 96(10), 1220-1244 (2016). https://doi.org/10.1002/zamm.201500280 otwiera się w nowej karcie
  109. Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562-577 (2014). https://doi.org/10.1177/1081286514531265 otwiera się w nowej karcie
  110. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251-269 (2013) otwiera się w nowej karcie
  111. Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional Elastica in large deformation as -limit of a discrete 1D mechanical system. ZAMP (2017). https://doi.org/10.1007/s00033-017-0785-9 otwiera się w nowej karcie
  112. Chróścielewski, J., Witkowski, W.: Discrepancies of energy values in dynamics of three intersecting plates. Int. J. Numer. Methods Biomed. Eng. 26(9), 1188-1202 (2010) otwiera się w nowej karcie
  113. Witkowski, W., Rucka, M., Chróścielewski, J., Wilde, K.: On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem. Anal. Des. 55, 31-41 (2012) otwiera się w nowej karcie
  114. Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Meth. Eng. 35, 63-94 (1992) otwiera się w nowej karcie
  115. Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Meth. Appl. Mech. Eng. 141, 1-46 (1997) otwiera się w nowej karcie
  116. Kuhl, D., Crisfield, M.A.: Energy-conserving algorithms in non-linear structural dynamics. Int. J. Numer. Meth. Eng. 45, 569-599 (1999) otwiera się w nowej karcie
  117. Chróścielewski, J., Lubowiecka, I., Witkowski, W.: Energy-conserving integration in six-field shell dynamics. In: ICTAM04 Abstract Book and CD-ROM Proceedings, 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 337 (August 15-21, 2004)
  118. Mukherjee, A., Joshi, S.P.: Gradientless technique for optimal distribution of piezoelectric material for structural control. Int. J. Numer. Meth. Eng. 57, 1737-1753 (2003) otwiera się w nowej karcie
  119. Mukherjee, A., Joshi, S.P.: Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates. AIAA J. 40, 1204-1210 (2002) otwiera się w nowej karcie
  120. Lentzen, S., Schmidt, R.: Nonlinear dynamics and control of smart piezolaminated plates and shells. In: Proceedings of ICDVC-2006, The Second International Conference on Dynamics, Vibration and Control, Beijing, China, 23-26 August 2006, Paper ICDVC2006-W42, Chinese Academy of Sciences, Beijing (2006) otwiera się w nowej karcie
  121. Mukherjee, A., Saha Chaudhuri, A.: Active control of dynamic instability of piezo-laminated imperfect columns. Smart Mater. Struct. 11, 874-879 (2002) otwiera się w nowej karcie
  122. Mukherjee, A., Saha Chaudhuri, A.: Exact solutions for instability control of piezolaminated imperfect struts. AIAA J. 14, 857-859 (2004) otwiera się w nowej karcie
  123. Mukherjee, A., Saha Chaudhuri, A.: Active control of piezolaminated columns-exact solutions and experimental validation. Smart Mater. Struct. 14, 475-482 (2005) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 171 razy

Publikacje, które mogą cię zainteresować

Meta Tagi