Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method - Publikacja - MOST Wiedzy

Wyszukiwarka

Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method

Abstrakt

Hybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with the nonlocal vibrational behavior of carbon/boron-nitride nano-hetero-tubes in the presence of magneto-thermal environment. Euler-Bernoulli beam model in conjunction with the Eringen's nonlocal theory of elasticity is adopted to derive the governing equation of motion. In order to conduct a nonlinear frequency analysis, the von-Kármán nonlinearity associated with moderate rotations is also considered. It is well-known that temperature gradients can significantly change the dynamic behavior of nanotubes. On the other hand, the coefficients of thermal expansions of carbon and boron-nitride nanotubes are quite different which may affect the structural stability of hybrid nanotubes. Hence, to explore the vibration characteristic of such composite structures, the influence of magneto-thermal environment is also taken into account. Finally, the eigenvalue analysis is performed to exhibit the nonlinear mode shapes and natural frequencies of the system due to initial displacement. It is expected that the recognition of dynamic behavior of such hybrid nanotubes may open the doors to the creative design of next-generation nanodevices.

Cytowania

  • 4

    CrossRef

  • 1 3

    Web of Science

  • 1 4

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Computational Design and Engineering nr 7, strony 591 - 602,
ISSN: 2288-5048
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Sedighi H. M., Malikan M., Valipour A., Kamil Żur K.: Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method// Journal of Computational Design and Engineering -Vol. 7,iss. 5 (2020), s.591-602
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1093/jcde/qwaa041
Bibliografia: test
  1. Agwa, M. A., & Eltaher, M. A. (2016). Vibration of a carbyne nanomechanical mass sensor with surface effect. Applied Physics A, 122, 335. otwiera się w nowej karcie
  2. Ansari, R., Gholami, R., & Ajori, S. (2013). Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. Journal of Vibra- tion and Acoustics, 135, 051016. otwiera się w nowej karcie
  3. Badjian, H., & Setoodeh, A. R. (2017). Improved tensile and buck- ling behavior of defected carbon nanotubes utilizing boron nitride coating -A molecular dynamics study. Physica B: Con- densed Matter, 507, 156-163. otwiera się w nowej karcie
  4. Barretta, R.,Čanadija, M., & Marotti de Sciarra, F. (2016). A higher- order Eringen model for Bernoulli-Euler nanobeams. Archive of Applied Mechanics, 86, 483-495. otwiera się w nowej karcie
  5. Barretta, R.,Čanadija, M., & Marotti de Sciarra, F. (2019). Modified nonlocal strain gradient elasticity for nano-rods and applica- tion to carbon nanotubes. Applied Sciences (Switzerland), 9(3), Article number 514. otwiera się w nowej karcie
  6. Barretta, R., Faghidian, S. A., Marotti de Sciarra, F., & Pinnola, F. P. (2019). Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nan- otube Young moduli. Mechanics of Advanced Materials and Structures. DOI:10.1080/15376494.2019.1683660. otwiera się w nowej karcie
  7. Barretta, R., & Marotti de Sciarra, F. (2019). Variational nonlocal gradient elasticity for nano-beams. International Journal of En- gineering Science, 143, 73-91. otwiera się w nowej karcie
  8. Bhashyam, G. R., & Prathap, G. (1980). Galerkin finite element method for nonlinear beam vibrations. Journal of Sound and Vibration, 72, 191-203. otwiera się w nowej karcie
  9. Chang, T.-P. (2017). Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field. Composites Part B: Engineer- ing, 114, 69-79. otwiera się w nowej karcie
  10. Chen, X. K., Xie, Z. X., Zhang, Y., Deng, Y. X., Zou, T. H., Liu, J., & Chen, K. Q. (2019). Highly efficient thermal rectifica- tion in carbon/boron nitride heteronanotubes. Carbon, 148, 532-539. otwiera się w nowej karcie
  11. Cheng, Q., Liu, Y. S., Wang, G. C., Liu, H., Jin, M. G., & Li, R. (2019). Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube. Physica E: Low- dimensional Systems and Nanostructures, 109, 183-190. otwiera się w nowej karcie
  12. Choyal, V. K., Choyal, V., Nevhal, S., Bergaley, A., & Kundalwal, S. I. (2019). Effect of aspects ratio on Young's modulus of boron nitride nanotubes: A molecular dynamics study. Materials To- day Proceedings. https://doi.org/10.1016/j.matpr.2019.05.347. otwiera się w nowej karcie
  13. Eltaher, M. A., Abdraboh, A. M., & Almitani, K. H., (2018). Res- onance frequencies of size dependent perforated nonlocal nanobeam. Microsystem Technologies, 24, 3925-3937. otwiera się w nowej karcie
  14. Eltaher, M. A., & Agwa, M. A. (2016). Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model. Sensors and Actuators A: Physical, 246, 9-17. otwiera się w nowej karcie
  15. Eltaher, M. A., Almalki, T. A., Ahmed, K. I. E., & Almitani, K. H. (2019). Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics ap- proach. Advances in Nano Research, 7, 39-49. otwiera się w nowej karcie
  16. Eltaher, M. A., Almalki, T. A., Almitani, K. H., & Ahmed, K. I. E. (2019). Participation factor and vibration of carbon nanotube with vacancies. Journal of Nano Research, 57, 158-174. otwiera się w nowej karcie
  17. Eltaher, M. A., Almalki, T. A., Almitani, K. H., Ahmed, K. I. E., & Abdraboh, A. M. (2019). Modal participation of fixed-fixed single-walled carbon nanotube with vacancies. International Journal of Advanced Structural Engineering, 11, 151-163. otwiera się w nowej karcie
  18. Eltaher, M. A., El-Borgi, S., & Reddy, J. N. (2016). Nonlinear anal- ysis of size-dependent and material-dependent nonlocal CNTs. Composite Structures, 153, 902-913. otwiera się w nowej karcie
  19. Eltaher, M. A., Khater, M. E., Abdel-Rahman, E., & Yavuz, M. (2014). Model for nano-scale bonding wires under thermal loading. In 14th IEEE international conference on nanotechnology (pp. 382-385), Toronto, ON, Canada. otwiera się w nowej karcie
  20. Eltaher, M. A., Khater, M. E., & Emam, S. A. (2016). A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathe- matical Modelling, 40, 4109-4128. otwiera się w nowej karcie
  21. Eltaher, M. A., Mohamed, N., Mohamed, S. A., & Seddek, L. F. (2019). Postbuckling of curved carbon nanotubes using en- ergy equivalent model. Journal of Nano Research, 57, 136-157. otwiera się w nowej karcie
  22. Eltaher, M. A., Omar, F. A., Abdalla, W. S., & Gad, E. H. (2019). Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity. Waves in Random and Complex Media, 29, 264-280. otwiera się w nowej karcie
  23. Emam, S. A., Eltaher, M. A., Khater, M. E., & Abdalla, W. S. (2018). Postbuckling and free vibration of multilayer imper- fect nanobeams under a pre-stress load. Applied Sciences, 8, 2238. otwiera się w nowej karcie
  24. Eringen, A. C. (1972a). Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, 10, 425-435. otwiera się w nowej karcie
  25. Eringen, A. C. (1972b). Nonlocal polar elastic continua. Interna- tional Journal of Engineering Science, 10, 1-16. otwiera się w nowej karcie
  26. Eringen, A. C. (1983). On differential equations of nonlocal elas- ticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703-4710. otwiera się w nowej karcie
  27. Evensen, D. A. (1968). Nonlinear vibrations of beams with vari- ous boundary conditions. American Institute of Aeronautics and Astronautics Journal, 6, 370-372. otwiera się w nowej karcie
  28. Genoese, A. L., Genoese, A. N., & Salerno, G. (2019). On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mechanica, 230, 1105-1128. https://doi.org/10.1007/s00707-018-2336-7. otwiera się w nowej karcie
  29. Ghalambaz, M., Ghalambaz, M., & Edalatifar, M. (2015). Buck- ling analysis of cantilever nanoactuators immersed in an electrolyte: A close form solution using Duan-Rach modified adomian decomposition method. Journal of Applied and Com- putational Mechanics, 1, 207-219. otwiera się w nowej karcie
  30. Ghalambaz, M., Ghalambaz, M., & Edalatifar, M. (2016). A new analytic solution for buckling of doubly clamped nano- actuators with integro differential governing equation using Duan-Rach adomian decomposition method. Applied Mathe- matical Modelling, 40, 7293-7302. otwiera się w nowej karcie
  31. Golmakani, M. E., Ahmadpour, M., & Malikan, M. (2019). Ther- mal buckling analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum mechanics. Journal of Applied and Computational Mechanics. DOI:10.22055/JACM.2019.31299.1859. otwiera się w nowej karcie
  32. Golmakani, M. E., Malikan, M., Sadraee Far, M. N., & Majidi, H. R. (2018). Bending and buckling formulation of graphene sheets based on nonlocal simple first order shear deformation the- ory. Materials Research Express, 5, 065010. otwiera się w nowej karcie
  33. Hamed, M. A., Sadoun, A. M., & Eltaher, M. A. (2019). Effects of porosity models on static behavior of size dependent func- tionally graded beam. Structural Engineering and Mechanics, 71, 89-98. otwiera się w nowej karcie
  34. Jena, S. K., Chakraverty, S., & Malikan, M. (2019). Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Engineering with Computers.https://doi.org/10.1007/s00366-019-00883-1. otwiera się w nowej karcie
  35. Jena, S. K., Chakraverty, S., Malikan, M., & Tornabene, F. (2019). Stability analysis of single-walled carbon nanotubes embed- ded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory. Mechanics Based Design of Structures and Machines, An International Journal. https://doi.org/10.1080/15397734.2019. 1698437 otwiera się w nowej karcie
  36. Liu, N., & Jeffers, A. E. (2018). Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity. Computers & Structures, 196, 1-11. otwiera się w nowej karcie
  37. Liu, N., & Jeffers, A. E. (2019). Feature-preserving rational Bézier triangles for isogeometric analysis of higher-order gradient damage models. Computer Methods in Applied Mechanics and Engineering, 357, 112585. otwiera się w nowej karcie
  38. Liu, N., Plucinsky, P., & Jeffers, A. E. (2017). Combining load-controlled and displacement-controlled algorithms to model thermal-mechanical snap-through instabili- ties in structures. Journal of Engineering Mechanics, 143. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001263. otwiera się w nowej karcie
  39. Malikan, M. (2017). Electro-mechanical shear buckling of piezo- electric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Applied Mathematical Modelling, 48, 196-207. otwiera się w nowej karcie
  40. Malikan, M. (2018). Temperature influences on shear stability of a nanosize plate with piezoelectricity effect. Multidiscipline Modeling in Materials and Structures, 14, 125-142. otwiera się w nowej karcie
  41. Malikan, M. (2019a). Electro-thermal buckling of elastically sup- ported double-layered piezoelectric nanoplates affected by an external electric voltage. Multidiscipline Modeling in Materi- als and Structures, 15, 50-78. otwiera się w nowej karcie
  42. Malikan, M. (2019b). On the buckling response of axially pres- surized nanotubes based on a novel nonlocal beam theory. Journal of Applied and Computational Mechanics, 5,103-112. otwiera się w nowej karcie
  43. Malikan, M., Dimitri, R., & Tornabene, F. (2019). Transient re- sponse of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering, 158, 198- 205. otwiera się w nowej karcie
  44. Malikan, M., Jabbarzadeh, M., & Dastjerdi, Sh. (2017). Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum. Microsystem Technologies, 23, 2973-2991. otwiera się w nowej karcie
  45. Malikan, M., & Nguyen, V. B. (2018a). A novel one-variable first- order shear deformation theory for biaxial buckling of a size- dependent plate based on the Eringen's nonlocal differential law. World Journal of Engineering, 15, 633-645. otwiera się w nowej karcie
  46. Malikan, M., & Nguyen, V. B. (2018b). Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environ- ment based on a novel one variable plate theory com- bining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures, 102, 8-28. otwiera się w nowej karcie
  47. Malikan, M., Nguyen, V. B., Dimitri, R., & Tornabene, F. (2019). Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradi- ent theory. Materials Research Express, 6, 075041. otwiera się w nowej karcie
  48. Malikan, M., Nguyen, V. B., & Tornabene, F. (2018a). Electro- magnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express, 5, 075031. otwiera się w nowej karcie
  49. Malikan, M., Nguyen, V. B., & Tornabene, F. (2018b). Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, An International Journal, 21, 778-786. otwiera się w nowej karcie
  50. Malikan, M., & Sadraee Far, M. N. (2018). Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory. Journal of Applied and Computational Mechanics, 4, 147-160.
  51. Malikan, M., Tornabene, F., & Dimitri, R. (2018). Nonlocal three- dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume inte- grals. Materials Research Express, 5, 095006. otwiera się w nowej karcie
  52. Mohamed, N., Eltaher, M. A., Mohamed, S. A., & Seddek, L. F. (2019). Energy equivalent model in analysis of postbuck- ling of imperfect carbon nanotubes resting on nonlinear elastic foundation. Structural Engineering and Mechanics, 70, 737-750.
  53. Narendar, S., Gupta, S. S., & Gopalakrishnan, S. (2012). Wave propagation in single-walled carbon nanotube under longi- tudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Applied Mathematical Modelling, 36, 4529-4538. otwiera się w nowej karcie
  54. Noghrehabadi, A. R., Eslami, M., & Ghalambaz, A. (2013). Influ- ence of size effect and elastic boundary condition on the pull-in instability of nano-scale cantilever beams immersed in liquid electrolytes. International Journal of Non-Linear Me- chanics, 52, 73-84. otwiera się w nowej karcie
  55. Noghrehabadi, A. R., Ghalambaz, M., & Ghanbarzadeh, A. (2012). A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM-Padé technique. Computers & Mathematics with Applications, 64, 2806-2815. otwiera się w nowej karcie
  56. Nozaki, H., & Itho, S. (1996). Lattice dynamics of a layered mate- rial BC2N. Physica B: Condensed Matter, 219-220, 487-489. otwiera się w nowej karcie
  57. Ouakad, H. M., & Sedighi, H. M. (2016). Rippling effect on the structural response of electrostatically actuated single- walled carbon nanotube based NEMS actuators. International Journal of Non-Linear Mechanics, 87, 97-108. otwiera się w nowej karcie
  58. Ramezannejad Azarboni, H. (2019). Magneto-thermal primary frequency response analysis of carbon nanotube considering surface effect under different boundary conditions. Compos- ites Part B: Engineering, 165, 435-441.
  59. Rodríguez Juárez, A. R., Anota, E. C., Cocoletzi, H. H., Sánchez Ramírez, J. F., & Castro, M. (2017). Stability and electronic properties of armchair boron nitride/carbon nanotubes. otwiera się w nowej karcie
  60. Fullerenes, Nanotubes and Carbon Nanostructures, 25(12), 716- 725.
  61. Sedighi, H. M. (2014). Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronautica, 95(1), 111- 123. otwiera się w nowej karcie
  62. Sedighi, H. M., & Bozorgmehri, A. (2016). Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory. Acta Mechanica, 227(6), 1575- 1591. otwiera się w nowej karcie
  63. Stephan, O., Ajayan, P. M., Colliex, C., Redlich, P., Lambert, J. M., Bernier, P., & Lefin, P. (1994). Doping graphitic and carbon nanotube structures with boron and nitrogen. Science, 266, 1683-1685. otwiera się w nowej karcie
  64. Vedaei, S. S., & Nadimi, E. (2019). Gas sensing properties of CNT- BNNT-CNT nanostructures: A first principles study. Applied Surface Science, 470, 933-942. otwiera się w nowej karcie
  65. Wang, L., Ni, Q., Li, M., & Qia, Q. (2008). The thermal effect on vi- bration and instability of carbon nanotubes conveying fluid. Physica E, 40, 3179-3182. otwiera się w nowej karcie
  66. Xiao, H., Zhang, C. X., Zhang, K. W., Sun, L. Z., & Zhong, J. X. (2013). Tunable differential conductance of single wall C/BN nanotube heterostructure. Journal of Molecular Modeling, 19, 2965-2969. otwiera się w nowej karcie
  67. Yazdanpanahi, E., Noghrehabadi, A. R., & Ghalambaz, A. (2014). Effect of dielectric-layer on the stress field of micro cantilever beams at the onset of pull-in instability. Journal of Mechanics, 30, 49-56. otwiera się w nowej karcie
  68. Yazdanpanahi, E., Noghrehabadi, A. R., & Ghanbarzadeh, A. (2013). Balance dielectric layer for micro electrostatic switches in the presence of capillary effect. International Jour- nal of Mechanical Sciences, 74, 83-90. otwiera się w nowej karcie
  69. Zhang, J., & Wang, C. Y. (2017). Beat vibration of hybrid boron nitride-carbon nanotubes -A new avenue to atomic-scale mass sensing. Computational Materials Science, 127,270-276. otwiera się w nowej karcie
  70. Zhao, H. S., Zhang, Y., & Lie, S. T. (2018). Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects. Acta Mechanica Sinica, 34, 676. https://doi.org/10.1007/s10409-018-0751-6. otwiera się w nowej karcie
  71. Zhen, Y.-X., Wen, S.-L., & Tang, Y. (2019). Free vibration anal- ysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model. Physica E: Low-dimensional Systems and Nanostructures, 105, 116-124. otwiera się w nowej karcie
  72. Zhu, B., Chen, X., Dong, Y., & Li, Y. (2019). Stability analysis of can- tilever carbon nanotubes subjected to partially distributed tangential force and viscoelastic foundation. Applied Math- ematical Modelling, 73, 190-209. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 42 razy

Publikacje, które mogą cię zainteresować

Meta Tagi