Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method - Publikacja - MOST Wiedzy

Wyszukiwarka

Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method

Abstrakt

This research predicts theoretically post-critical axial buckling behavior of truncated conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the nanostructure are considered by exerting the second stress-gradient and second strain-gradient in the stress and strain fields. Besides small-scale influences, the surface effect is also taken into consideration. The effect of the Winkler foundation is nonlinearly taken into account based on the Taylor expansion. A new admissible function is used in the Rayleigh-Ritz solution technique applicable for buckling and post-buckling of nanotubes and nanobeams. Numerical results and related discussions are compared and reported with those obtained by the literature. The significant results proved that the surface effect and the nonlinear term of the substrate affect the CCNT considerably.

Cytowania

  • 8

    CrossRef

  • 2 4

    Web of Science

  • 2 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 11 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials Research Express nr 7, strony 1 - 17,
ISSN: 2053-1591
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Malikan M., Eremeev V.: Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method// Materials Research Express -Vol. 7,iss. 2 (2020), s.1-17
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1088/2053-1591/ab691c
Bibliografia: test
  1. Z. Isfahani, M. T. Samadi, M. Alavi, N. Manuchehrpoor, M. Bakhani, Efficiency of Carbon Nanotubes in Municipal Solid Waste Landfill Leachate (Case Study: Treatment of Hamadan Landfill Leachate), Journal of water and Wastewater (in persian) 23 (2012) 67-72.
  2. S. Iijima, Helical microtubes of graphitic carbon, Nature 354 (1991) 56-8. otwiera się w nowej karcie
  3. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-635. otwiera się w nowej karcie
  4. W. J. Chang and S. S. Chu, Analytical solution of flexural vibration responses on taped atomic force microscope cantilevers, Physics Letters A 309 (2003) 133-137. otwiera się w nowej karcie
  5. W. J. Chang, T. H. Fang, H. L. Lee, and Y. C. Yang, Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe, Ultramicroscopy 102 (2005) 85- 92. otwiera się w nowej karcie
  6. I. C. Chen, L. H. Chen, X. R. Ye, C. Daraio, S. Jin, C. A. Orme, A. Quist, R. La, Extremely sharp carbon nanocone probes for atomic force microscopy imaging, Applied Physics Letters 88 (2006) 153102. otwiera się w nowej karcie
  7. K. Huo, X. Zhang, L. Hu, X. Sun, J. Fu, P. K. Chu, One-step growth and field emission properties of quasialigned Ti O2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates, Applied Physics Letter 93 (2008) 013105. otwiera się w nowej karcie
  8. Z. Siwy, E. Heins, C. C. Harrell, P. Kohli, and C. R. Martin, Conical-nanotube ion-current rectifiers: the role of surface charge, Journal of the American Chemical Society 126 (2004) 10850- 10851. otwiera się w nowej karcie
  9. L. T. Sexton, L. P. Horne, S. A. Sherrill, G. W. Bishop, L. A. Baker, and C. R. Martin, Resistive-Pulse Studies of Proteins and Protein/Antibody Complexes Using a Conical Nanotube Sensor, Journal of the American Chemical Society 129 (2007) 13144-13152. otwiera się w nowej karcie
  10. Zh. Lou, Ch. Chen, Q. Chen, Growth of Conical Carbon Nanotubes by Chemical Reduction of MgCO3, Journal of Physics and Chemistry B 109 (2005) 10557-10560.
  11. W. J. Chang, H. L. Lee, Free vibration of an embedded conical nanotube with surface effect, Digest Journal of Nanomaterials and Biostructures 8 (2013) 1325-1333. otwiera się w nowej karcie
  12. H. L. Lee, W. J. Chang, Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory, Journal of Applied Physics 108 (2010) 093503. otwiera się w nowej karcie
  13. T. Chang, G. Li, X. Guo, Elastic axial buckling of carbon nanotubes via a molecular mechanics model, Carbon 43 (2005) 287-294. otwiera się w nowej karcie
  14. Y. Yan, W. Q. Wang, L. X. Zhang, Nonlocal effect on axially compressed buckling of triple- walled carbon nanotubes under temperature field, Applied Mathematical Modelling 34 (2010) otwiera się w nowej karcie
  15. H. Shima, Buckling of Carbon Nanotubes: A State of the Art Review, Materials 5 (2012) 47- 84. otwiera się w nowej karcie
  16. B. L. Wang, M. Hoffman, A. B. Yu, Buckling analysis of embedded nanotubes using gradient continuum theory, Mechanics of Materials 45 (2012) 52-60. otwiera się w nowej karcie
  17. H. M. Berrabah, N. Z. Sekrane and B. E. Adda, Buckling Analysis of Single-Walled Carbon Nanotubes Embedded in an Elastic Medium under Axial Compression Using Non-Local Timoshenko Beam Theory, Journal of Advanced Research in Applied Mechanics 17 (2016) 1-13.
  18. B. Akgöz, Ö. Civalek, A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation, Composite Structures 176 (2017) 1028- 1038. otwiera się w nowej karcie
  19. R. Rafiee, R. Maleki Moghadam, On the modeling of carbon nanotubes: A critical review, Composites Part B: Engineering 56 (2014) 435-449. otwiera się w nowej karcie
  20. L. J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of Applied Physics 94 (2003) 7281. otwiera się w nowej karcie
  21. M. Rahmanian, M. A. Torkaman-Asadi, R. D. Firouz-Abadi, M. A. Kouchakzadeh, Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models, Physica B: Condensed Matter 484 (2016) 83-94. otwiera się w nowej karcie
  22. R. Mao, F. H. Ling, Post-Critical Behavior of Thin-Walled Composite Beams, Thin-Walled Structures 18 (1994) 291-316. otwiera się w nowej karcie
  23. X. Song, S.-R. Li, Thermal buckling and post-buckling of pinned-fixed Euler-Bernoulli beams on an elastic foundation, Mechanics Research Communications 34 (2007) 164-171. otwiera się w nowej karcie
  24. N. Challamel, On the post-buckling of elastic beams on gradient foundation, C. R. Mecanique 339 (2011) 396-405. otwiera się w nowej karcie
  25. N. Silvestre, B. Faria, J. N. Canongia Lopes, A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes, Composite Structures 94 (2012) 1352-1358. otwiera się w nowej karcie
  26. R. Ansari, R. Gholami, S. Sahmani, Prediction of compressive post-buckling behavior of single-walled carbon nanotubes in thermal environments, Applied Physics A 113 (2013) 145-153. otwiera się w nowej karcie
  27. S. D. Akbas, Large post-buckling behavior of Timoshenko beams under axial compression loads, Structural Engineering and Mechanics 51 (2014) 955-971. otwiera się w nowej karcie
  28. R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, H. Rouhi, Buckling and postbuckling of single-walled carbon nanotubes based on a nonlocal Timoshenko beam model, Journal of Applied Mathematics and Mechanics 95 (2014) 939-951. otwiera się w nowej karcie
  29. G.-L. She, F.-G. Yuan, Y.-R. Ren, W.-S. Xiao, On buckling and postbuckling behavior of nanotubes, International Journal of Engineering Science 121 (2017) 130-142. otwiera się w nowej karcie
  30. H. L. Dai , S. Ceballes , A. Abdelkefi , Y. Z. Hong , L. Wang , Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field, Applied Mathematical Modelling 55 (2018) 758-775. otwiera się w nowej karcie
  31. H. Asadi, M. M. Aghdam, Large amplitude vibration and post-buckling analysis of variable cross-section composite beams on nonlinear elastic foundation, International Journal of Mechanical Sciences 79 (2014) 47-55. otwiera się w nowej karcie
  32. H. Babaei, Y. Kiani, M. R. Eslami, Thermal Buckling and Post-buckling Analysis of Geometrically Imperfect FGM Clamped Tubes on Nonlinear Elastic Foundation, Applied Mathematical Modelling 71 (2019) 12-30. otwiera się w nowej karcie
  33. C. W. Lim, G. Zhang, J. N. Reddy, A Higher-order nonlocal elasticity and strain gradient theory and Its Applications in wave propagation, Journal of the Mechanics and Physics of Solids 78 (2015) 298-313. otwiera się w nowej karcie
  34. G.-L. She, Y.-R. Ren, K.-M. Yan, On snap-buckling of porous FG curved nanobeams, Acta Astronautica 161 (2019) 475-484. otwiera się w nowej karcie
  35. G.-L. She, F.-G. Yuan, B. Karami, Y.-R. Ren, W.-S. Xiao, On nonlinear bending behavior of FG porous curved nanotubes, International Journal of Engineering Science 135 (2019) 58-74. otwiera się w nowej karcie
  36. M. R. Barati, N. M. Faleh, A. M. Zenkour, Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory, Mechanics of Advanced Materials and Structures 26 (2019) 1661-1669. otwiera się w nowej karcie
  37. M. H. Ghayesh, A. Farajpour, Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects, Mechanics of Advanced Materials and Structures, (2018), https://doi.org/10.1080/15376494.2018.1473537. otwiera się w nowej karcie
  38. B. Karami, D. Shahsavari, M. Janghorban, Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory, Mechanics of Advanced Materials and Structures 25 (2018) 1047- 1057. otwiera się w nowej karcie
  39. M. Malikan, V. B. Nguyen, F. Tornabene, Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory, Engineering Science and Technology, an International Journal 21 (2018) 778- 786. otwiera się w nowej karcie
  40. M. Malikan, V. B. Nguyen, Buckling analysis of piezo-magnetoelectric nanoplates in gradient theory, Physica E: Low-dimensional Systems and Nanostructures 102 (2018) 8-28. otwiera się w nowej karcie
  41. M. Malikan, R. Dimitri, F. Tornabene, Effect of sinusoidal corrugated geometries on the vibrational response of viscoelastic nanoplates, Applied Sciences 8 (2018) 1432. otwiera się w nowej karcie
  42. M. Malikan, V. B. Nguyen, F. Tornabene, Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory, Materials Research Express 5 (2018) 075031. otwiera się w nowej karcie
  43. M. Malikan, R. Dimitri, F. Tornabene, Transient response of oscillated carbon nanotubes with an internal and external damping, Composites Part B: Engineering 158 (2019) 198-205. otwiera się w nowej karcie
  44. M. Malikan, V. B. Nguyen, R. Dimitri, F. Tornabene, Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory, Materials Research Express 6 (2019) 075041. otwiera się w nowej karcie
  45. S. K. Jena, S. Chakraverty, M. Malikan, Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium, Engineering with Computers (2019). otwiera się w nowej karcie
  46. https://doi.org/10.1007/s00366-019-00883-1 otwiera się w nowej karcie
  47. S. K. Jena, S. Chakraverty, M. Malikan, F. Tornabene, Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory (2019). https://doi.org/10.1080/15397734.2019.1698437 otwiera się w nowej karcie
  48. M. Malikan, M. Krasheninnikov, V. A. Eremeyev, Torsional stability capacity of a nano- composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field, International Journal of Engineering Science (2020). otwiera się w nowej karcie
  49. https://doi.org/10.1016/j.ijengsci.2019.103210 otwiera się w nowej karcie
  50. H. Abdoul-Anziz, P. Seppecher, C. Bellis, Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms, Mathematics and Mechanics of Solids 24 (2019) 3976-3999. otwiera się w nowej karcie
  51. R. Ansari, S. Sahmani, H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique, Computational Materials Science 50 (2011) 3050-3055. otwiera się w nowej karcie
  52. K. K. Pradhan, S. Chakraverty, Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method, Composites: Part B 51 (2013) 175-184. otwiera się w nowej karcie
  53. M. Teifouet, A. Robinson, S. Adali, Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads, Mechanical Sciences 8 (2017) 299-305.
  54. M. Teifouet A. Robinson, S. Adali, Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation, Composite Structures 206 (2018) 95-103.
  55. M. Malikan, M. Jabbarzadeh, S. Dastjerdi, Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo- elasticity using nonlocal continuum, Microsystem Technologies 23 (2017) 2973-2991. otwiera się w nowej karcie
  56. M. E. Golmakani, M. Malikan, M. N. Sadraee Far, H. R. Majidi, Bending and buckling formulation of graphene sheets based on nonlocal simple first order shear deformation theory, Materials Research Express 5 (2018) 065010. otwiera się w nowej karcie
  57. M. Malikan, M. N. Sadraee Far, Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory, Journal of Applied and Computational Mechanics 4 (2018) 147-160.
  58. M. E. Golmakani, M. Ahmadpour, M. Malikan, Thermal buckling analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum mechanics, Journal of Applied and Computational Mechanics (2019). DOI: 10.22055/JACM.2019.31299.1859 otwiera się w nowej karcie
  59. X. J. Xu, X. C. Wang, M. L. Zheng, Z. Ma, Bending and buckling of nonlocal strain gradient elastic beams, Composite Structures 160 (2017) 366-377. otwiera się w nowej karcie
  60. X. J. Xu, Z. C. Deng, Variational principles for buckling and vibration of MWCNTs modeled by strain gradient theory, Applied Mathematics and Mechanics 35 (2014) 1115-28. otwiera się w nowej karcie
  61. M. T. A. Robinson, S. Adali, Variational solution for buckling of nonlocal carbon nanotubes under uniformly and triangularly distributed axial loads, Composite Structures 156 (2016) 101- 107. otwiera się w nowej karcie
  62. M. H. Kahrobaiyan, M. Rahaeifard, M. T. Ahmadian, A nonlinear strain gradient beam formulation, International Journal of Engineering Science, 49 (2011) 1256-67. otwiera się w nowej karcie
  63. C. M. Wang, Y. Y. Zhang, S. S. Ramesh, S. Kitipornchai, Buckling analysis of micro-and nano- rods/tubes based on nonlocal Timoshenko beam theory, Journal of Physics D: Applied Physics 39 (2006) 3904-3909. otwiera się w nowej karcie
  64. S. C. Pradhan, G. K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Computational Materials Science 50 (2011) 1052-1056. otwiera się w nowej karcie
  65. J. B. Gunda, Thermal post-buckling & large amplitude free vibration analysis of Timoshenko beams: Simple closed-form solutions, Applied Mathematical Modelling 38 (2014) 4548-4558. otwiera się w nowej karcie
  66. R. Ansari, S. Sahmani, H. Rouhi, Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions, Physics Letters A 375 (2011) 1255-1263. otwiera się w nowej karcie
  67. W. H. Duan, C. M. Wang, Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory, Nanotechnology 18 (2007) 385704. otwiera się w nowej karcie
  68. W. H. Duan, C. M. Wang, Y. Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, Journal of Applied Physics 101 (2007) 24305. otwiera się w nowej karcie
  69. A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54 (1983) 4703-4710. otwiera się w nowej karcie
  70. B. I. Yakobson, C. J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response, Physical Review Letters 76 (1996) 2511-2514. otwiera się w nowej karcie
  71. R. E. Miller, V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11 (2000) 139. otwiera się w nowej karcie
  72. X. Chen, C. Q. Fang, X. Wang, The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress, Physica E 85 (2017) 47-55. otwiera się w nowej karcie
  73. J. Niiranen, V. Balobanov, J. Kiendl, S. B. Hosseini, Variational formulations, model comparisons and numerical methods for Euler-Bernoulli micro-and nano-beam models, Mathematics and Mechanics of Solids 24 (2019) 312-335. otwiera się w nowej karcie
  74. V. A. Eremeyev, On effective properties of materials at the nano-and microscales considering surface effects, Acta Mechanica 227 (2016) 29-42. otwiera się w nowej karcie
  75. P. S. Rao, S. Anandatheertha, G. Narayana Naik, S. Gopalakrishnan, Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach, Indian Academy of Sciences 40 (2015) 1301-1311. otwiera się w nowej karcie
  76. Y. Wang, X. Wang, X. Ni, H. Wu, Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes, Computational Materials Science 32 (2005) 141-146. otwiera się w nowej karcie
  77. Y. J. Peng, L. Y. Zhang, Q. H. Jin, B. H. Li, D. T. Ding, Ab-initio studies of elastic properties and electronic structures of C and BN nanotubes, Physica E 33 (2006) 155-159. otwiera się w nowej karcie
  78. L. Li, Y. Hu, Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects, International Journal of Mechanical Sciences 120 (2017) 159-170. otwiera się w nowej karcie
  79. M. Meo, M. Rossi, A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes, Materials Science and Engineering: A 454-455 (2007) 170-177. otwiera się w nowej karcie
  80. M. M. L. Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature (London) 381 (1996) 678-680. otwiera się w nowej karcie
  81. S. L. Mielke, D. Troy, S. Zhang, J. L. Li, S. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, T. otwiera się w nowej karcie
  82. Belytschko, The role of vacancy defects and holes in the fracture of carbon nanotubes, Chemical Physics Letters 390 (2004) 413-420.
  83. Q. Ma, D. R. Clarke, Size Dependent Hardness in Silver Single Crystals, Journal of Materials Research 10 (1995) 853-863. otwiera się w nowej karcie
  84. W. J. Pooleh, M. F. Ashby, N. A. Fleck, Micro-Hardness of Annealed and Work-Hardened Copper Polycrystals, Scripta Materialia 34 (1996) 559-564. otwiera się w nowej karcie
  85. Y. Y. Lim, M. M. Chaudhri, Effect of the Indenter Load on the Nano hardness of Ductile Metals: An Experimental Study of Polycrystalline Work-Hardened and Annealed Oxygen-Free Copper, Philosophical Magazine A 79 (1999) 2979-3000.
Weryfikacja:
Politechnika Gdańska

wyświetlono 73 razy

Publikacje, które mogą cię zainteresować

Meta Tagi