Pure cross-anisotropy for geotechnical elastic potentials - Publikacja - MOST Wiedzy

Wyszukiwarka

Pure cross-anisotropy for geotechnical elastic potentials

Cytuj jako

Pełna treść

pobierz publikację
pobrano 15 razy
Wersja publikacji
Submitted Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Rok wydania:
2021
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) https://doi.org/10.1007/s11440-021-01284-9
Bibliografia: test
  1. A. Amorosi, F. Rollo, and G. T. Houlsby. A nonlinear anisotropic hy- perelastic formulation for granular materials: comparison with existing models and validation. Acta Geotechnica, 15(1):179-196, 2020. 2.1 otwiera się w nowej karcie
  2. Z.P. Bažant. Stability of structures. Oxford University Press, New York, Oxford, 1991. 1
  3. J.P. Boehler and A. Sawczuk. On yielding of oriented solids. Acta Mechanica, 27:185-206, 1977. 7 otwiera się w nowej karcie
  4. I.R. Borja, C. Tamagnini, and A. Amorosi. Coupling plasticity and energy-conservating elasticity models for clays. Journal of Geotechech- nical Geoenvironmental Engineering, ASCE, 123(10):948-957, 1997. 2.1 otwiera się w nowej karcie
  5. H.R. Boyce. A non-linear model for the elastic behaviour of granular materials under repeated loading. pages 285-294, 1980. Proceedings of Int. Symp. on Soils under Cyclic and Transient Loading, Swansea. 2.1
  6. P. Chadwick and G. D. Smith. Advances in Applied Mechanics, volume 17, chapter Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials. School of Mathematics and Physics Uni- versity of East Anglia Norwich, England, 1977. 8.2 otwiera się w nowej karcie
  7. M. Cudny and K.. otwiera się w nowej karcie
  8. Staszewska. A hyperelastic model for soils with stress- induced and inherent anisotropy. Acta Geotechnica, 2021. 2.1
  9. V. Fioravante, D. Giretti, and M. Jamiolkowski. Small strain stiffness of carbonate Kenya Sand. Engineering Geology, 161:65-80, 2013. 1, 6, 8.2, 10, 9 otwiera się w nowej karcie
  10. S. Gehring. Fortgesetzte Untersuchungen zur hyperelastischen Steifigkeit von Ton. Master's thesis, Institut für Boden-und
  11. Felsmechanik, Karlsruher Institut für Technologie, April 2020. 2.1, 2.1, 2.1, 3, 5, 9, 10.2
  12. J. Graham and G. T. Houlsby. Anisotropic elasticity of natural clay. Géotechnique, 33(2):165-180, 1983. 5, 5, 5 otwiera się w nowej karcie
  13. G. Gudehus. A comparison of some constitutive laws for soils under ra- dially symmetric loading and unloading. In Proceedings of the 3rd Inter- national Conference On Numerical Methods in Geomechanics, Aachen, Aachen, 1979. Balkema. 1, 2.1, 10, 12 otwiera się w nowej karcie
  14. G. T. Houlsby, A. Amorosi, and F. Rollo. Non-linear anisotropic hyper- elasticity for granular materials. Computers and Geotechnics, 115:1-11, 2019. 2.1 otwiera się w nowej karcie
  15. G.T. Houlsby and A.M. Puzrin. Principles of Hyperplasticity. Springer, London, 2006. 1
  16. L. Knittel, T. Wichtmann, A. Niemunis, G. Huber, E. Espino, and T. Triantafyllidis. Pure elastic stiffness of sand represented by response envelopes derived from cyclic triaxial tests with local strain measure- ments. Acta Geotechnica, 2020. DOI: 10.1017/S0962492904000212. 2.1 otwiera się w nowej karcie
  17. L.J. Knittel. Fortgesetzte quasi-statische Untersuchungen zur Elastizität von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Mas- ter's thesis, Institut für Boden-und Felsmechanik, Karlsruher Institut für Technologie, September 2014. 2.1, 2
  18. Y. Kong, J. Zhao, and Y. Yao. A failure criterion for cross-anisotropic soils considering microstructure. Acta Geotechnica, 8:665-673, 2013. 11 otwiera się w nowej karcie
  19. A. S. Lodge. The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids. The Quarterly Journal of Mechanics and Applied Mathematics, 8(2):211-225, 1955. 3, 6 otwiera się w nowej karcie
  20. H. Matsuoka and T. Nakai. A new failure for soils in three-dimensional stresses. In Deformation and Failure of Granular Materials, pages 253- 263, 1982. Proc. IUTAM Symp. in Delft. 11 otwiera się w nowej karcie
  21. D. Mašín and J. Rott. Small strain stiffness anisotropy of natural sedi- mentary clays: review and a model. Acta Geotechnica, 9:299-312, 2014. 5, 6, 9 otwiera się w nowej karcie
  22. A. Niemunis and M. Cudny. On hyperplasticity for clays. Computers and Geotechnics, 23:221-236, 1998. 2.1, 2.1 otwiera się w nowej karcie
  23. A. Niemunis, C.E. Grandas Tavera, and T Wichtmann. Peak Stress Obliquity in drained and undrained sands. Simulations with Neohy- poplasticity. In Th. Triantafyllidis, editor, Holistic simulation of geotech- nical installation processes. Numerical and physical modelling. , vol- ume 80, pages 85-114. Springer, 2016. 2.1, 5 otwiera się w nowej karcie
  24. A. Niemunis and L. Knittel. Removal of the membranepenetration error from triaxialdata. Open Geomechanics, SSN: 2644-9676:article no. 5, 2020. DOI: https://doi.org/10.5802/ogeo.7. 8.1 otwiera się w nowej karcie
  25. A. Niemunis, L. F. Prada-Sarmiento, and C. E. Grandas-Tavera. Parae- lasticity. Acta Geotechnica, 6(2):67-80, 2011. 1 otwiera się w nowej karcie
  26. A. Niemunis, T. Wichtmann, and T. Triantafyllidis. A high-cycle accu- mulation model for sand. Computers and Geotechnics, 32(4):245-263, 2005. 1 otwiera się w nowej karcie
  27. V. A. Osinov and Wu W. Simple shear in sand with an anisotropic hypoplastic model. Geomechanics and Geoeingineering, 1:43-50, 2006. 5, 3, 3 otwiera się w nowej karcie
  28. W. Ratananikoma, S. Likitlersuanga, and S. Yimsiri. An investigation of anisotropic elastic parameters of bangkok clay from vertical and horizon- tal cut specimens. Geomechanics and Geoengineering: An International Journal, 8:15-27, 2013. 9, 10 otwiera się w nowej karcie
  29. T. Sadek, M. Lings, L. Dihoru, and D. Muir-Wood. Wave transmission in Hostun sand: multiaxial experiments. Rivista Italiana Di Geotechnica, (2):69-84, 2007. 1, 8.2, 10, 9
  30. P. Vermeer. A five-constant model unifying well established concepts. In Constit. Relat. for Soils, pages 175-198. Balkema, Holland, 1982. Proceedings of the International Workshop in Grenoble. 2.1
  31. T. Wichtmann. Karlsruhe kaolin database @ONLINE. 8.1, 6 otwiera się w nowej karcie
  32. S. Yimsiri and K. Soga. Cross-anisotropic elastic parameters of two natural stiff clays. Géotechnique, 61(9):809-814, 2011. 9, 10 otwiera się w nowej karcie
  33. M. Zytynski, M.F. Randolph, R. Nova, and C.P. Wroth. On modelling the unloading-reloading behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2:87-94, 1978. 1 otwiera się w nowej karcie
Weryfikacja:
Brak weryfikacji

wyświetlono 13 razy

Publikacje, które mogą cię zainteresować

Meta Tagi