Quadrotor Flight Controller Design Using Classical Tools - Publikacja - MOST Wiedzy

Wyszukiwarka

Quadrotor Flight Controller Design Using Classical Tools

Abstrakt

A principal aspect of quadrocopter in-flight operation is to maintain the required attitude of the craft’s frame, which is done either automatically in the so-called supervised flight mode or manually during man-operated flight mode. This paper deals with the problem of flight controller (logical) structure and algorithm design dedicated for the man-operated flight mode. The role of the controller is to stabilise the rotational speeds of the Tait-Bryan angles. This work aims to extend the sustainable performance operating range of a proportional-integral-derivative output feedback compensator (PID) based flight controller by exploiting the concepts of feedforward inverse actuator model and the re-definition of input space in order to handle the non-linearity of the system under control. The proposed solution is verified numerically and implemented in the form of a discrete-time domain algorithm, obtained by emulation, using a physical quadrocopter model.

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 86 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019 Springer Nature Switzerland AG)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS nr 17, strony 1 - 9,
ISSN: 1598-6446
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Zubowicz T., Armiński K., Kusalewicz A.: Quadrotor Flight Controller Design Using Classical Tools// INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS -Vol. 17,iss. X (2019), s.1-9
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s12555-018-0710-9
Bibliografia: test
  1. Guowei Cai, Ben M Chen, and Tong Heng Lee. Unmanned rotorcraft systems. Springer Science & Business Media, 2011. otwiera się w nowej karcie
  2. Markus Ryll, Heinrich H Bülthoff, and Paolo Robuffo Giordano. Modeling and control of a quadrotor uav with tilting propellers. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 4606- 4613. IEEE, 2012. otwiera się w nowej karcie
  3. Krzysztof Arminski and Tomasz Zubowicz. Robust iden- tification of quadrocopter model for control purposes. In Methods and Models in Automation and Robotics (MMAR), 2017 22nd International Conference on, pages 337-342. IEEE, 2017. otwiera się w nowej karcie
  4. Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin. Quadrotor helicopter flight dynamics and control: Theory and experiment. In AIAA Guidance, Navigation and Control Conference and Exhib., page 6461, 2007. otwiera się w nowej karcie
  5. Jun Li and Yuntang Li. Dynamic analysis and PID control for a quadrotor. International Conference on Mechatronics and Automation, pages 573-578, 2011. otwiera się w nowej karcie
  6. Hossein Bolandi, Mohammad Rezaei, Reza Mohsenipour, Hossein Nemati, and S. M. Smailzadeh. Attitude Control of a Quadrotor with Optimized PID Controller. Intelligent Control and Automation, 04(03):335-342, 2013. otwiera się w nowej karcie
  7. Yuru Wang, Ping Li, Zhenping Lan, Baoying Li, and Chen Li. Quadrotor Aircraft Design based on the K60 Controller. Journal of Engineering Science and Technology Review, 10(6):21-30, 2017. otwiera się w nowej karcie
  8. Samir Bouabdallah, Andre Noth, and Roland Siegwart. Pid vs lq control techniques applied to an indoor micro quadro- tor. In Intelligent Robots and Systems, 2004.(IROS 2004). otwiera się w nowej karcie
  9. Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages 2451-2456. IEEE, 2004. otwiera się w nowej karcie
  10. Chi Zhang, Xiaoguang Zhou, Hang Zhao, Aini Dai, and Huiling Zhou. Three-dimensional fuzzy control of mini quadrotor UAV trajectory tracking under impact of wind disturbance. International Conference on Advanced Mechatronic Systems, ICAMechS, pages 372-377, 2017. otwiera się w nowej karcie
  11. Sepideh Salehfard, Taleb Abdollahi, Cai-Hua Xiong, and Yong-Heng Ai. An optimized fuzzy-padé controller ap- plied to attitude stabilization of a quadrotor. International Journal of Control, Automation and Systems, 16(3):1425- 1434, Jun 2018. otwiera się w nowej karcie
  12. Daewon Lee, H Jin Kim, and Shankar Sastry. Feedback lin- earization vs. adaptive sliding mode control for a quadrotor helicopter. International Journal of control, Automation and systems, 7(3):419-428, 2009. otwiera się w nowej karcie
  13. Yueneng Yang and Ye Yan. Attitude regulation for un- manned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerospace Science and Technology, 54:208-217, 2016. otwiera się w nowej karcie
  14. Tarek N Dief, Shiego Yoshida, and Mohamed Abdelhady. Attitude and altitude stabilization of quad rotor using pa- rameter estimation and self-tuning controller. In AIAA At- mospheric Flight Mechanics Conference, page 2392, 2015.
  15. A. Mokhtari, A. Benallegue, and B. Daachi. Robust feedback linearization and GH∞ controller for a quadro- tor unmanned aerial vehicle. 2005 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems, IROS, 57(1):1009-1014, 2005. otwiera się w nowej karcie
  16. Abdelhamid Tayebi and Stephen McGilvray. Attitude sta- bilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology, 14(3):562-571, 2006. otwiera się w nowej karcie
  17. Andreas P. Sandiwan, Adha Cahyadi, and Samiadji Herdju- nanto. Robust proportional-derivative control on so(3) with disturbance compensation for quadrotor uav. International Journal of Control, Automation and Systems, 15(5):2329- 2342, Oct 2017. otwiera się w nowej karcie
  18. A. Tzes, G. Nikolakopoulos, and K. Alexis. Model predic- tive quadrotor control: attitude, altitude and position ex- perimental studies. IET Control Theory & Applications, 6(12):1812-1827, 2012.
  19. Anil Aswani, Patrick Bouffard, and Claire Tomlin. Exten- sions of learning-based model predictive control for real- time application to a quadrotor helicopter. In American Control Conference (ACC), 2012, pages 4661-4666. IEEE, 2012. otwiera się w nowej karcie
  20. Andrew Zulu and Samuel John. A review of control algo- rithms for autonomous quadrotors. CoRR, abs/1602.02622, 2016. otwiera się w nowej karcie
  21. Necdet Sinan Özbek, Mert Önkol, and Mehmet Önder Efe. Feedback control strategies for quadrotor-type aerial robots: A survey. Transactions of the Institute of Measure- ment and Control, 38(5):529-554, 2015.
  22. A Kusalewicz, K Armiński, and T Zubowicz. Użytkowy model matematyczny quadrocoptera do celów sterowania. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, 51:103-105, 2016. Zastosowanie komputerów w nauce i technice (In Polish).
  23. Randal W Beard and Timothy W McLain. Small unmanned aircraft: Theory and practice. Princeton university press, 2012.
  24. Norman S Nise. Control Systems Engineering. John Wiley & Sons, 2007. otwiera się w nowej karcie
Źródła finansowania:
  • Polish MNiSW 8902/E-359/M/2017: Young Researcher Support Program
Weryfikacja:
Politechnika Gdańska

wyświetlono 155 razy

Publikacje, które mogą cię zainteresować

Meta Tagi