Qualitative analysis of phospholipids and their oxidised derivatives – used techniques and examples of their applications related to lipidomic research and food analysis - Publikacja - MOST Wiedzy

Wyszukiwarka

Qualitative analysis of phospholipids and their oxidised derivatives – used techniques and examples of their applications related to lipidomic research and food analysis

Abstrakt

Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes, but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterized by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidized PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.

Cytowania

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 157 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
FREE RADICAL RESEARCH strony 1 - 33,
ISSN: 1071-5762
Język:
polski
Rok wydania:
2019
Opis bibliograficzny:
Parchem K., Sasson S., Ferreri C., Bartoszek-Pączkowska A.: Qualitative analysis of phospholipids and their oxidised derivatives – used techniques and examples of their applications related to lipidomic research and food analysis// FREE RADICAL RESEARCH -, (2019), s.1-33
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/10715762.2019.1657573
Bibliografia: test
  1. K€ ullenberg de Gaudry D, Taylor La, Schneider M, et al. Health effects of dietary phospholipids. Lipids Health Dis. 2012;11:1-16.
  2. Molendi-Coste O, Legry V, Leclercq IA. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol Res Pract. 2011;2011:364040. otwiera się w nowej karcie
  3. Blesso CN. Egg phospholipids and cardiovascular health. Nutrients. 2015;7(4):2731-2747. otwiera się w nowej karcie
  4. Ahn SH, Lim SJ, Ryu YM, et al. Absorption rate of krill oil and fish oil in blood and brain of rats. Lipids Health Dis. 2018;17(1):162. otwiera się w nowej karcie
  5. Choi JY, Jang JS, Son DJ, et al. Antarctic krill oil diet protects against lipopolysaccharide-induced oxidative stress, neuroinflammation and cognitive impairment. Int J Mol Sci. 2017;18(12):1-15. otwiera się w nowej karcie
  6. Ursoniu S, Sahebkar A, Serban MC, et al. Lipid-modi- fying effects of krill oil in humans: systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2017;75(5):361-373. otwiera się w nowej karcie
  7. Burri L, Hoem N, Banni S, et al. Marine Omega-3 phospholipids: metabolism and biological activities. Int J Mol Sci. 2012;13(11):15401-15419. otwiera się w nowej karcie
  8. Taylor LA, Pletschen L, Arends J, et al. Marine phos- pholipids -a promising new dietary approach to tumor-associated weight loss. Support Care Cancer. 2010;18(2):159-170. otwiera się w nowej karcie
  9. Wąsowicz E, Gramza A, He R s M, et al. Oxidation of lip- ids in foods. Pol J Food Nutr Sci. 2004;13:87-100.
  10. Miyamoto S, Dupas C, Murota K, et al. Phospholipid hydroperoxides are detoxified by phospholipase A2 and GSH peroxidase in rat gastric mucosa. Lipids. 2003;38(6):641-649. otwiera się w nowej karcie
  11. Ursini F, Zamburlini A, Cazzolato G, et al. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med. 1998;25(2):250-252. otwiera się w nowej karcie
  12. Cohn JS, Kamili A, Wat E, et al. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010; 2(2):116-127. otwiera się w nowej karcie
  13. Fruhwirth GO, Loidl A, Hermetter A. Oxidized phos- pholipids: from molecular properties to disease. Biochim Biophys Acta. 2007;1772(7):718-736. otwiera się w nowej karcie
  14. Ashraf MZ, Kar NS, Podrez EA. Oxidized phospholi- pids: biomarker for cardiovascular diseases. Int J Biochem Cell Biol. 2009;41(6):1241-1244. otwiera się w nowej karcie
  15. Ravandi A, Babaei S, Leung R, et al. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids. 2004; 39(2):97-109. otwiera się w nowej karcie
  16. Hammad LA, Wu G, Saleh MM, et al. Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun Mass Spectrom. 2009;23(6):863-876. otwiera się w nowej karcie
  17. Kinoshita M, Oikawa S, Hayasaka K, et al. Age-related increases in plasma phosphatidylcholine hydroperox- ide concentrations in control subjects and patients with hyperlipidemia. Clin Chem. 2000;46(6 Pt 1): 822-828. otwiera się w nowej karcie
  18. Gwak YS, Kang J, Leem JW, et al. Oxidized phosphat- idylcholine is a marker for neuroinflammation in mul- tiple sclerosis brain. J Neurosci Res. 2007;85(11): 2352-2359.
  19. Bochkov VN, Oskolkova OV, Birukov KG, et al. Generation and biological activities of oxidized phos- pholipids. Antioxid Redox Signal. 2010;12(8): 1009-1059. otwiera się w nowej karcie
  20. Adachi J, Matsushita S, Yoshioka N, et al. Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in alcoholic patients. J Lipid Res. 2004;45(5):967-971. otwiera się w nowej karcie
  21. Hy€ otyl€ ainen T, Bondia-Pons I, Ore si c M. Lipidomics in nutrition and food research. Mol Nutr Food Res. 2013;57(8):1306-1318. otwiera się w nowej karcie
  22. Ferreri C, Chatgilialoglu C. Membrane lipidomics for personalized health. Chichester: John Wiley & Sons; 2015. otwiera się w nowej karcie
  23. Ferreri C, Chatgilialoglu C. Role of fatty acid-based functional lipidomics in the development of molecu- lar diagnostic tools. Expert Rev Mol Diagn. 2012; 12(7):767-780. otwiera się w nowej karcie
  24. Nicolson GL, Ash ME. Lipid replacement therapy: a natural medicine approach to replacing damaged lip- ids in cellular membranes and organelles and restor- ing function. Biochim Biophys Acta. 2014;1838(6): 1657-1679. otwiera się w nowej karcie
  25. Reis A. Oxidative phospholipidomics in health and disease: achievements, challenges and hopes. Free Radic Biol Med. 2017;111:25-37. otwiera się w nowej karcie
  26. Cifuentes A. Food analysis and foodomics. J Chromatogr A. 2009;1216(43):7109. otwiera się w nowej karcie
  27. Cifuentes A. Food analysis: present, future, and foo- domics. ISRN Anal Chem. 2012;2012:1-16. otwiera się w nowej karcie
  28. Herrero M, Sim o C, Garc ıa-Cañas V, et al. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev. 2012;31(1):49-69. otwiera się w nowej karcie
  29. Gorrochategui E, Jaumot J, Lacorte S, et al. Data ana- lysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC Trends Anal Chem. 2016;82:425-442. otwiera się w nowej karcie
  30. Han X, Gross RW. Electrospray ionization mass spec- troscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A. 1994;91(22):10635-10639. otwiera się w nowej karcie
  31. Marto JA, White FM, Seldomridge S, et al. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 1995;67(21):3979-3984. otwiera się w nowej karcie
  32. Schiller J, Arnold K. Application of high resolution 31P NMR spectroscopy to the characterization of the phospholipid composition of tissues and body fluids -a methodological review. Med Sci Monit. 2002; 8(11):MT205-MT222.
  33. Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography -mass spectrometry. Trends Anal Chem. 2014;61:192-206. otwiera się w nowej karcie
  34. Ferreri C, Masi A, Sansone A, et al. Fatty acids in membranes as homeostatic, metabolic and nutri- tional biomarkers: recent advancements in analytics and diagnostics. Diagnostics. 2016;7(1):1-14. otwiera się w nowej karcie
  35. Fahy E, Subramaniam S, Brown HA, et al. A compre- hensive classification system for lipids. J Lipid Res. 2005;46(5):839-861. otwiera się w nowej karcie
  36. Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv. 2005;23(3):203-259. otwiera się w nowej karcie
  37. Christie W. Ether lipids. AOCS Lipid Libr. 2016;49:vii- 151.
  38. Christie W. Long-chain or sphingoid bases. AOCS Lipid Libr. 2016;1-9;141.
  39. Mukhamedova KS, Glushenkova AI. Natural phospho- nolipids. Chem Nat Compd. 2000;36(4):329-341. otwiera się w nowej karcie
  40. Van Nieuwenhuyzen W, Tom as MC. Update on vege- table lecithin and phospholipid technologies. Eur J Lipid Sci Technol. 2008;110(5):472-486. otwiera się w nowej karcie
  41. Samhan-Arias AK, Ji J, Demidova OM, et al. Oxidized phospholipids as biomarkers of tissue and cell dam- age with a focus on cardiolipin. Biochim Biophys Acta. 2012;1818(10):2413-2423. otwiera się w nowej karcie
  42. O'Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta. 2011;1811(11):818-826.
  43. Bochkov V, Gesslbauer B, Mauerhofer C, et al. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med. 2017;111:6-24. otwiera się w nowej karcie
  44. Reis A, Spickett CM. Chemistry of phospholipid oxida- tion. Biochim Biophys Acta. 2012;1818(10):2374-2387. otwiera się w nowej karcie
  45. Zhou L, Zhao M, Bindler F, et al. Identification of oxi- dation compounds of 1-stearoyl-2-linoleoyl-sn -glyc- ero-3-phosphoethanolamine during thermal oxidation. J Agric Food Chem. 2015;63(43):9615-9620. otwiera się w nowej karcie
  46. Peterson BL, Cummings BS. A review of chromato- graphic methods for the assessment of phospholi- pids in biological samples. Biomed Chromatogr. 2006;20(3):227-243. otwiera się w nowej karcie
  47. Cruz M, Wang M, Frisch-Daiello J, et al. Improved butanol-methanol (BUME) method by replacing acetic acid for lipid extraction of biological samples. Lipids. 2016;51(7):887-896. otwiera się w nowej karcie
  48. Birjandi AP, Bojko B, Ning Z, et al. High throughput solid phase microextraction: a new alternative for analysis of cellular lipidome? J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1043:12-19. otwiera się w nowej karcie
  49. Garwoli nska D, Hewelt-Belka W, Namie snik J, et al. Rapid characterization of the human breast milk lipi- dome using a solid-phase microextraction and liquid chromatography-mass spectrometry-based approach. J Proteome Res. 2017;16(9):3200-3208. otwiera się w nowej karcie
  50. Ulmer CZ, Jones CM, Yost RA, et al. Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Anal Chim Acta. 2018;1037:351-357. otwiera się w nowej karcie
  51. Reis A, Rudnitskaya A, Blackburn GJ, et al. A compari- son of five lipid extraction solvent systems for lipido- mic studies of human LDL. J Lipid Res. 2013;54(7): 1812-1824. otwiera się w nowej karcie
  52. Pellegrino RM, Di Veroli A, Valeri A, et al. LC/MS lipid profiling from human serum: a new method for glo- bal lipid extraction. Anal Bioanal Chem. 2014;406(30): 7937-7948. otwiera się w nowej karcie
  53. Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high- throughput lipidomics. J Lipid Res. 2008;49(5): 1137-1146. otwiera się w nowej karcie
  54. Patterson RE, Ducrocq AJ, McDougall DJ, et al. Comparison of blood plasma sample preparation methods for combined LC-MS lipidomics and metab- olomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:260-266. otwiera się w nowej karcie
  55. Gil A, Zhang W, Wolters JC, et al. One-vs two-phase extraction: re-evaluation of sample preparation pro- cedures for untargeted lipidomics in plasma samples. Anal Bioanal Chem. 2018;410(23):5859-5870. otwiera się w nowej karcie
  56. L€ ofgren L, Ståhlman M, Forsberg GB, et al. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690-1700.
  57. L€ ofgren L, Forsberg GB, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6:27688.
  58. Barrilero R, Gil M, Amig o N, et al. LipSpin: a new bio- informatics tool for quantitative 1H NMR lipid profil- ing. Anal Chem. 2018;90(3):2031-2040. otwiera się w nowej karcie
  59. Pizarro C, Arenzana-R amila I, P erez-del-Notario N, et al. Plasma lipidomic profiling method based on ultrasound extraction and liquid chromatography mass spectrometry. Anal Chem. 2013;85(24): 12085-12092. otwiera się w nowej karcie
  60. Teo CC, Chong WPK, Tan E, et al. Advances in sam- ple preparation and analytical techniques for lipido- mics study of clinical samples. TrAC Trends Anal Chem. 2015;66:1-18. otwiera się w nowej karcie
  61. Khoomrung S, Chumnanpuen P, Jansa-Ard S, et al. Rapid quantification of yeast lipid using micro- wave-assisted total lipid extraction and HPLC-CAD. Anal Chem. 2013;85(10):4912-4919. otwiera się w nowej karcie
  62. Sarafian MH, Gaudin M, Lewis MR, et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography À mass spectrometry. Anal Chem. 2014;86(12):5766-5774. otwiera się w nowej karcie
  63. St€ ubiger G, Aldover-Macasaet E, Bicker W, et al. Targeted profiling of atherogenic phospholipids in human plasma and lipoproteins of hyperlipidemic patients using MALDI-QIT-TOF-MS/MS. Atherosclerosis. 2012;224(1):177-186.
  64. St€ ubiger G, Belgacem O, Rehulka P, et al. Analysis of oxidized phospholipids by MALDI mass spectrometry using 6-Aza-2-thiothymine together with matrix addi- tives and disposable target surfaces. Anal Chem. 2010;82(13):5502-5510. otwiera się w nowej karcie
  65. Liakh I, Pakiet A, Sledzinski T, et al. Modern methods of sample preparation for the analysis of oxylipins in biological samples. Molecules. 2019;24(8):1639. otwiera się w nowej karcie
  66. Spickett CM, Reis A, Pitt AR. Identification of oxidized phospholipids by electrospray ionization mass spec- trometry and LC-MS using a QQLIT instrument. Free Radic Biol Med. 2011;51(12):2133-2149. otwiera się w nowej karcie
  67. Ulmer CZ, Patterson RE, Koelmel JP, et al. A robust lipidomics workflow for mammalian cells, plasma, and tissue using liquid-chromatography high-reso- lution tandem mass spectrometry. Methods Mol Biol. 2017;1609:91-106. otwiera się w nowej karcie
  68. Donato P, Cacciola F, Cichello F, et al. Determination of phospholipids in milk samples by means of hydro- philic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J Chromatogr A. 2011;1218(37):6476-6482. otwiera się w nowej karcie
  69. Bruun-Jensen L, Colarow L, Skibsted LH. Detection and quantification of phospholipid hydroperoxides in turkey meat extracts by planar chromatography. J Planar Chromatogr. 1995;8:475-479. otwiera się w nowej karcie
  70. Hammad SM, Pierce JS, Soodavar F, et al. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res. 2010; 51(10):3074-3087. otwiera się w nowej karcie
  71. Gonzalez-Covarrubias V, Dane A, Hankemeier T, et al. The influence of citrate, EDTA, and heparin anticoa- gulants to human plasma LC-MS lipidomic profiling. Metabolomics. 2013;9(2):337-348. otwiera się w nowej karcie
  72. Chua EC, Shui G, Lee IT, et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci U S A. 2013;110(35): 14468-14473. otwiera się w nowej karcie
  73. Kasukawa T, Sugimoto M, Hida A, et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A. 2012;109(37): 15036-15041. otwiera się w nowej karcie
  74. Aviram R, Manella G, Kopelman N, et al. Lipidomics analyses reveal temporal and spatial lipid organiza- tion and uncover daily oscillations in intracellular organelles. Mol Cell. 2016;62(4):636-648. otwiera się w nowej karcie
  75. Am ezaga J, Arranz S, Urruticoechea A, et al. Altered red blood cell membrane fatty acid profile in cancer patients. Nutrients. 2018;10(12):1-13. otwiera się w nowej karcie
  76. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. otwiera się w nowej karcie
  77. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911-917. otwiera się w nowej karcie
  78. Iverson SJ, Lang SL, Cooper MH. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids. 2001;36(11):1283-1287. otwiera się w nowej karcie
  79. Cequier-S anchez E, Rodr ıguez C, Ravelo AG, et al. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from sam- ples of different natures. J Agric Food Chem. 2008; 56(12):4297-4303. otwiera się w nowej karcie
  80. Mawatari S, Hazeyama S, Morisaki T, et al. Enzymatic measurement of ether phospholipids in human plasma after hydrolysis of plasma with phospholip- ase A1. Pract Lab Med. 2018;10:44-51. otwiera się w nowej karcie
  81. Lee DY, Kind T, Yoon YR, et al. Comparative evalu- ation of extraction methods for simultaneous mass- spectrometric analysis of complex lipids and primary metabolites from human blood plasma. Anal Bioanal Chem. 2014;406(28):7275-7286. otwiera się w nowej karcie
  82. Mung D, Li L. Development of chemical isotope labeling LC-MS for milk metabolomics: comprehen- sive and quantitative profiling of the amine/phenol submetabolome. Anal Chem. 2017;89(8):4435-4443. otwiera się w nowej karcie
  83. Satomi Y, Hirayama M, Kobayashi H. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry. J Chromatogr B. 2017;1063:93-100. otwiera się w nowej karcie
  84. Kiełbowicz G, Micek P, Wawrze nczyk C. A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids. Talanta. 2013;105:28-33. otwiera się w nowej karcie
  85. Aoyagi R, Ikeda K, Isobe Y, et al. Comprehensive analyses of oxidized phospholipids using a measured MS/MS spectra library. J Lipid Res. 2017;58(11): 2229-2237. otwiera się w nowej karcie
  86. Spickett CM, Rennie N, Winter H, et al. Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ion- ization electrospray [correction of electroscopy] MS. Biochem J. 2001;355(2):449-457. otwiera się w nowej karcie
  87. Haller E, St€ ubiger G, Lafitte D, et al. Chemical recog- nition of oxidation-specific epitopes in low-density lipoproteins by a nanoparticle based concept for trapping, enrichment, and liquid chromatography- tandem mass spectrometry analysis of oxidative stress biomarkers. Anal Chem. 2014;86(19): 9954-9961. otwiera się w nowej karcie
  88. Birjandi AP, Mirnaghi FS, Bojko B, et al. Application of solid phase microextraction for quantitation of polyunsaturated fatty acids in biological fluids. Anal Chem. 2014;86(24):12022-12029. otwiera się w nowej karcie
  89. Milojkovi c-Opsenica D, Andri F. High performance thin-layer chromatography. In: Green chromatographic techniques: separation and purifica- tion of organic and inorganic analytes. Dordrecht: Springer Science & Business Media; 2013. otwiera się w nowej karcie
  90. Handloser D, Widmer V, Reich E. Separation of phos- pholipids by HPTLC -an investigation of important parameters. J Liq Chromatogr Relat Technol. 2008; 31(13):1857-1870. otwiera się w nowej karcie
  91. Rabel F, Sherma J. Review of the state of the art of preparative thin-layer chromatography. J Liq Chromatogr Relat Technol. 2017;40(4):165-176. otwiera się w nowej karcie
  92. Palusinska-Szysz M, Kania M, Turska-Szewczuk A, et al. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii. Plos One. 2014;9(7):e101243. otwiera się w nowej karcie
  93. Xu G, Waki H, Kon K, et al. Thin-layer chromatog- raphy of phospholipids and their lyso forms: applica- tion to determination of extracts from rat hippocampal CA1 region. Microchem J. 1996;53(1): 29-33. otwiera się w nowej karcie
  94. Tanaka T, Kassai A, Ohmoto M, et al. Quantification of phosphatidic acid in foodstuffs using a thin-layer- chromatography-imaging technique. J Agric Food Chem. 2012;60(16):4156-4161. otwiera się w nowej karcie
  95. Fuchs B, S€ uss R, Teuber K, et al. Lipid analysis by thin-layer chromatography -a review of the current state. J Chromatogr A. 2011;1218(19):2754-2774. otwiera się w nowej karcie
  96. Dy nska-Kukulska K, Ciesielski W, Zakrzewski R. The use of a new, modified Dittmer-Lester spray reagent for phospholipid determination by the TLC image analysis technique. Biomed Chromatogr. 2013;27(4): 458-465. otwiera się w nowej karcie
  97. Helmerich G, Koehler P. Comparison of methods for the quantitative determination of phospholipids in lecithins and flour improvers. J Agric Food Chem. 2003;51(23):6645-6651. otwiera się w nowej karcie
  98. Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromato- grams. J Lipid Res. 1964;5:126-127.
  99. Stillwell W. Membrane reconstitution. In: An intro- duction to biological membranes. 2nd ed. New York: Elsevier; 2016. p. 273-312. otwiera się w nowej karcie
  100. Rhee KS, Del Rosario RR, Dugan LR. Determination of plasmalogens after treating with a 2,4-dinitrophenyl- hydrazine-phosphoric acid reagent. Lipids. 1967;2(4): 334-338. otwiera się w nowej karcie
  101. Fuchs B. Analytical methods for (oxidized) plasmalo- gens: methodological aspects and applications. Free Radic Res. 2015;49(5):599-617. otwiera się w nowej karcie
  102. Kriska T, Girotti AW. Separation and quantitation of peroxidized phospholipids using high-performance thin-layer chromatography with tetramethyl-p- phenylenediamine detection. Anal Biochem. 2004; 327(1):97-106. otwiera się w nowej karcie
  103. Friedman P, Horkko S, Steinberg D, et al. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol con- densation. J Biol Chem. 2002;277(9):7010-7020. otwiera się w nowej karcie
  104. Parchem K, Kusznierewicz B, Chmiel T, et al. Profiling and qualitative assessment of enzymatically and thermally oxidized egg yolk phospholipids using a two-step high-performance liquid chromatography protocol. J Am Oil Chem Soc. 2019;96(6):693-706. otwiera się w nowej karcie
  105. L ısa M, C ıfkov a E, Hol capek M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spec- trometry. J Chromatogr A. 2011;1218(31):5146-5156.
  106. Dugo P, Fawzy N, Cichello F, et al. Stop-flow compre- hensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J Chromatogr A. 2013;1278: 46-53. otwiera się w nowej karcie
  107. Kim J, Minkler PE, Salomon RG, et al. Cardiolipin: characterization of distinct oxidized molecular spe- cies. J Lipid Res. 2011;52(1):125-135. otwiera się w nowej karcie
  108. Jia L, Wang C, Kong H, et al. Plasma phospholipid metabolic profiling and biomarkers of mouse IgA nephropathy. Metabolomics. 2006;2(2):95-104. otwiera się w nowej karcie
  109. Kim J, Hoppel CL. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;912:105-114. otwiera się w nowej karcie
  110. Bur e C, Ayciriex S, Testet E, et al. A single run LC- MS/MS method for phospholipidomics. Anal Bioanal Chem. 2013;405(1):203-213.
  111. Anesi A, Guella G. A fast liquid chromatography- mass spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chro- matography. J Chromatogr A. 2015;1384:44-52. otwiera się w nowej karcie
  112. Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation tech- nique. Anal Bioanal Chem. 2012;402(1):231-247. otwiera się w nowej karcie
  113. Gama MR, da Costa Silva RG, Collins CH, et al. Hydrophilic interaction chromatography. TrAC Trends Anal Chem. 2012;37:48-60. otwiera się w nowej karcie
  114. Schwalbe-Herrmann M, Willmann J, Leibfritz D. Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A. 2010; 1217(32):5179-5183. otwiera się w nowej karcie
  115. C ıfkov a E, Hol capek M, L ısa M, et al. Nontargeted quantitation of lipid classes using hydrophilic inter- action liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem. 2012;84(22): 10064-10070.
  116. C ıfkov a E, Hol capek M, L ısa M. Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two- dimensional liquid chromatography-electrospray ion- ization mass spectrometry. Lipids. 2013;48(9): 915-928.
  117. Hol capek M, Jir asko R, L ısa M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A. 2012;1259:3-15. otwiera się w nowej karcie
  118. Kong P, Lehmann MJ, Helms JB, et al. Lipid analysis of Eimeria sporozoites reveals exclusive phospholi- pids, a phylogenetic mosaic of endogenous synthe- sis, and a host-independent lifestyle. Cell Discov. 2018;4:24. otwiera się w nowej karcie
  119. L ısa M, Hol capek M. High-throughput and compre- hensive lipidomic analysis using ultrahigh- performance supercritical fluid chromatography - mass spectrometry. Anal Chem. 2015;87(14): 7187-7195.
  120. Caudron E, Zhou JY, Chaminade P, et al. Fluorescence probe assisted post-column detection for lipid analysis in microbore-LC. J Chromatogr A. 2005;1072(2):149-157. otwiera się w nowej karcie
  121. Milne GL, Porter NA. Separation and identification of phospholipid peroxidation products. Lipids. 2001; 36(11):1265-1275. otwiera się w nowej karcie
  122. Sala P, P€ otz S, Brunner M, et al. Determination of oxi- dized phosphatidylcholines by hydrophilic inter- action liquid chromatography coupled to Fourier transform mass spectrometry. Int J Mol Sci. 2015; 16(4):8351-8363. otwiera się w nowej karcie
  123. Stoll DR, Carr PW. Two-dimensional liquid chroma- tography: a state of the art tutorial. Anal Chem. 2017;89(1):519-531. otwiera się w nowej karcie
  124. Carr PW, Stoll DR Two-dimensional liquid chromatog- raphy: principles, practical implementation and appli- cations Agilent Technical Note. Germany: Agilent Technologies, Inc.; 2015.
  125. Nie H, Liu R, Yang Y, et al. Lipid profiling of rat peri- toneal surface layers by online normal-and reversed- phase 2D LC QToF-MS. J Lipid Res. 2010;51(9): 2833-2844. otwiera się w nowej karcie
  126. Tranchida PQ, Donato P, Cacciola F, et al. Potential of comprehensive chromatography in food analysis. TrAC Trends Anal Chem. 2013;52:186-205. otwiera się w nowej karcie
  127. Ostrowska J, Skrzydlewska E, Figaszewski ZA. Isolation and analysis of phospholipids. Chem Anal. 2000;45:613-629.
  128. Restuccia D, Spizzirri UG, Puoci F, et al. Determination of phospholipids in food samples. Food Rev Int. 2012;28(1):1-46. otwiera się w nowej karcie
  129. Ibusuki D, Nakagawa K, Asai A, et al. Preparation of pure lipid hydroperoxides. J Lipid Res. 2008;49(12): 2668-2677. otwiera się w nowej karcie
  130. Butler O'Connor ES, Mazerik JN, Cruff JP, et al. Lipoxygenase-catalyzed phospholipid peroxidation: preparation, purification, and characterization of phosphatidylinositol peroxides. In: Uppu RM, Murthy SN, Pryor WA, et al., ed. Free radicals and antioxidant protocols. Methods in molecular biology (methods and protocols). 2nd ed. New York: Humana Press; 2010. p. 387-401.
  131. Schweikart F, Hulthe G. HPLC-UV-MS analysis: a source for severe oxidation artifacts. Anal Chem. 2019;91(3):1748-1751. otwiera się w nowej karcie
  132. Ibrahim H, Caudron E, Kasselouri A, et al. Interest of fluorescence derivatization and fluorescence probe assisted post-column detection of phospholipids: a short review. Molecules. 2010;15(1):352-373. otwiera się w nowej karcie
  133. Ouhazza M, Sioufii AM. Liquid chromatography ana- lysis of some phospholipids with fluorescence detec- tion. Analusis. 1992;20:185-188.
  134. Ramos RG, Libong D, Rakotomanga M, et al. Comparison between charged aerosol detection and light scattering detection for the analysis of Leishmania membrane phospholipids. J Chromatogr A. 2008;1209(1-2):88-94. otwiera się w nowej karcie
  135. Kiełbowicz G, Trziszka T, Wawrze nczyk C. Separation and quantification of phospholipid and neutral lipid classes by HPLC-CAD: application to egg yolk lipids. J Liq Chromatogr Relat Technol. 2015;38(8):898-903. otwiera się w nowej karcie
  136. Han X, Gross RW. Global analyses of cellular lipi- domes directly from crude extracts of biological sam- ples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44(6):1071-1079. otwiera się w nowej karcie
  137. Hou W, Zhou H, Elisma F, et al. Technological devel- opments in lipidomics. Brief Funct Genomics Proteomics. 2008;7(5):395-409. otwiera się w nowej karcie
  138. Schr€ oter J, S€ uß R, Schiller J. MALDI-TOF MS to moni- tor the kinetics of phospholipase A2-digestion of oxi- dized phospholipids. Methods. 2016;104:41-47.
  139. Schr€ oter J, Griesinger H, Reu€ y E, et al. Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: a study using high performance thin- layer chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2016;1439:89-96.
  140. Fuchs B, Schiller J, S€ uss R, et al. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem. 2007;389(3):827-834. otwiera się w nowej karcie
  141. Schiller J, S€ uß R, Fuchs B, et al. Combined application of TLC and matrix-assisted laser desorption and ionisa- tion time-of-flight mass spectrometry (MALDI-TOF MS) to phospholipid analysis of brain. Chromatographia. 2003;57(S1):S297-S302. otwiera się w nowej karcie
  142. Fuchs B, Schiller J, S€ uß R, et al. Capabilities and dis- advantages of combined matrix-assisted laser- desorption/ionization time-of-flight mass spectrom- etry (MALDI-TOF MS) and high-performance thin- layer chromatography (HPTLC): analysis of egg yolk lipids. JPC J Planar Chromatogr Mod TLC. 2009;22(1): 35-42. otwiera się w nowej karcie
  143. Domingues MRM, Reis A, Domingues P. Mass spec- trometry analysis of oxidized phospholipids. Chem Phys Lipids. 2008;156(1-2):1-12. otwiera się w nowej karcie
  144. Reis A, Domingues P, Domingues MRM. Structural motifs in primary oxidation products of palmitoyl- arachidonoyl-phosphatidylcholines by LC-MS/MS. J Mass Spectrom. 2013;48(11):1207-1216. otwiera się w nowej karcie
  145. Reis A, Domingues MRM, Amado FML, et al. Radical peroxidation of palmitoyl-lineloyl-glycerophospho- choline liposomes: identification of long-chain oxi- dised products by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;855(2):186-199. otwiera się w nowej karcie
  146. Deeley JM, Thomas MC, Truscott RJW, et al. Identification of abundant alkyl ether glycerophospho- lipids in the human lens by tandem mass spectrom- etry techniques. Anal Chem. 2009;81(5):1920-1930. otwiera się w nowej karcie
  147. Ali AH, Zou X, Lu J, et al. Identification of phospholi- pids classes and molecular species in different types of egg yolk by using UPLC-Q-TOF-MS. Food Chem. 2017;221:58-66. otwiera się w nowej karcie
  148. Reis A, Domingues P, Ferrer-Correia AJV, et al. Tandem mass spectrometry of intact oxidation prod- ucts of diacylphosphatidylcholines: evidence for the occurrence of the oxidation of the phosphocholine head and differentiation of isomers. J Mass Spectrom. 2004;39(12):1513-1522. otwiera się w nowej karcie
  149. Rathahao-Paris E, Alves S, Junot C, et al. High reso- lution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics. 2016; 12(1):10 otwiera się w nowej karcie
  150. Baker PRS, Armando AM, Campbell JL, et al. Three- dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J Lipid Res. 2014;55(11):2432-2442. otwiera się w nowej karcie
  151. Ni Z, Milic I, Fedorova M. Identification of carbony- lated lipids from different phospholipid classes by shotgun and LC-MS lipidomics. Anal Bioanal Chem. 2015;407(17):5161-5173. otwiera się w nowej karcie
  152. Nakanishi H, Iida Y, Shimizu T, et al. Analysis of oxi- dized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theor- etically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009; 877(13):1366-1374. otwiera się w nowej karcie
  153. Spickett CM, Pitt AR. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal. 2015;22(18):1646-1666. otwiera się w nowej karcie
  154. Kliman M, May JC, Mclean JA. Lipid analysis and lipi- domics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta. 2011;1811(11): 935-945. otwiera się w nowej karcie
  155. Groessl M, Graf S, Taylor A, et al. Separation of iso- meric lipids by ion mobility-time of flight mass spec- trometry. Thun: Tofwerk AG; 2015. p. 1-4. otwiera się w nowej karcie
  156. Jackson SN, Ugarov M, Post JD, et al. A Study of phospholipids by Ion Mobility TOFMS. J Am Soc Mass Spectrom. 2008;19(11):1655-1662. otwiera się w nowej karcie
  157. Ore si c M. Bioinformatics and computational approaches applicable to lipidomics. Eur J Lipid Sci Technol. 2009;111(1):99-106. otwiera się w nowej karcie
  158. Checa A, Bedia C, Jaumot J. Lipidomic data analysis: tutorial, practical guidelines and applications. Anal Chim Acta. 2015;885:1-16. otwiera się w nowej karcie
  159. Dalmau N, Bedia C, Tauler R. Validation of the Regions of Interest Multivariate Curve Resolution (ROIMCR) procedure for untargeted LC-MS lipidomic analysis. Anal Chim Acta. 2018;1025:80-91. otwiera się w nowej karcie
  160. Hartler J, Tharakan R, K€ ofeler HC, et al. Bioinformatics tools and challenges in structural analysis of lipido- mics MS/MS data. Brief Bioinform. 2013;14(3): 375-390. otwiera się w nowej karcie
  161. Wang M, Wang C, Han RH, et al. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83-108. otwiera się w nowej karcie
  162. Kind T, Liu KH, Lee DY, et al. LipidBlast in silico tan- dem mass spectrometry database for lipid identifica- tion. Nat Methods. 2013;10(8):755-758. otwiera się w nowej karcie
  163. Koelmel JP, Kroeger NM, Ulmer CZ, et al. LipidMatch: an automated workflow for rule-based lipid identifi- cation using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics. 2017; 18(1):331. otwiera się w nowej karcie
  164. Ni Z, Angelidou G, Hoffmann R, et al. LPPtiger soft- ware for lipidome-specific prediction and identifica- tion of oxidized phospholipids from LC-MS datasets. Sci Rep. 2017;7(1):15138. otwiera się w nowej karcie
  165. Kochen MA, Chambers MC, Holman JD, et al. Greazy: open-source software for automated phospholipid tandem mass spectrometry identification. Anal Chem. 2016;88(11):5733-5741. otwiera się w nowej karcie
  166. Ejsing CS, Duchoslav E, Sampaio J, et al. Automated identification and quantification of glycerophospholi- pid molecular species by multiple precursor ion scan- ning. Anal Chem. 2006;78(17):6202-6214. otwiera się w nowej karcie
  167. Herzog R, Schuhmann K, Schwudke D, et al. LipidXplorer: a software for consensual cross-plat- form lipidomics. PLOS One. 2012;7(1):e29851. otwiera się w nowej karcie
  168. Gode D, Volmer DA. Lipid imaging by mass spec- trometry -a review. Analyst. 2013;138(5):1289-1315. otwiera się w nowej karcie
  169. Bedna r ık A, Mach alkov a M, Moskovets E, et al. MALDI MS imaging at acquisition rates exceeding 100 pixels per second. J Am Soc Mass Spectrom. 2019;30(2): 289-298.
  170. Shimizu Y, Satou M, Hayashi K, et al. Matrix-assisted laser desorption/ionization imaging mass spectrom- etry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation. Anal Bioanal Chem. 2017;409(4):1007-1016. otwiera się w nowej karcie
  171. Hong JH, Kang JW, Kim DK, et al. Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer's dis- ease. J Lipid Res. 2016;57(1):36-45. otwiera się w nowej karcie
  172. Eberlin LS, Tibshirani RJ, Zhang J, et al. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proc Natl Acad Sci U S A. 2014;111(7):2436-2441. otwiera się w nowej karcie
  173. Shimma S, Sugiura Y, Hayasaka T, et al. MALDI-based imaging mass spectrometry revealed abnormal distri- bution of phospholipids in colon cancer liver metas- tasis. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;855(1):98-103. otwiera się w nowej karcie
  174. Eberlin LS, Norton I, Dill AL, et al. Classifying human brain tumors by lipid imaging with mass spectrom- etry. Cancer Res. 2012;72(3):645-654. otwiera się w nowej karcie
  175. Mao X, He J, Li T, et al. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors. Sci Rep. 2016;6:21043. otwiera się w nowej karcie
  176. Stutts WL, Menger RF, Kiss A, et al. Characterization of phosphatidylcholine oxidation products by MALDI MS(n). Anal Chem. 2013;85(23):11410-11419. otwiera się w nowej karcie
  177. Patterson NH, Thomas A, Chaurand P. Monitoring time-dependent degradation of phospholipids in sec- tioned tissues by MALDI imaging mass spectrometry. J Mass Spectrom. 2014;49(7):622-627. otwiera się w nowej karcie
  178. Maulucci G, Cohen O, Daniel B, et al. Fatty acid- related modulations of membrane fluidity in cells: detection and implications. Free Radic Res. 2016; 50(sup1):S40-S50. otwiera się w nowej karcie
  179. Cohen G, Riahi Y, Shamni O, et al. Role of lipid per- oxidation and PPAR-d in amplifying glucose-stimu- lated insulin secretion. Diabetes. 2011;60(11): 2830-2842. otwiera się w nowej karcie
  180. Cohen G, Shamni O, Avrahami Y, et al. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia. 2015;58(6):1333-1343. otwiera się w nowej karcie
  181. Maulucci G, Di Giacinto F, De Angelis C, et al. Real time quantitative analysis of lipid storage and lipoly- sis pathways by confocal spectral imaging of intra- cellular micropolarity. BBA Mol Cell Biol Lipids. 2018; 1863(7):783-793. otwiera się w nowej karcie
  182. Drummen GPC, van Liebergen LCM, Op den Kamp JAF, et al. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectro- scopic characterization and validation of method- ology. Free Radic Biol Med. 2002;33(4):473-490. otwiera się w nowej karcie
  183. Gibbons E, Nelson J, Anderson L, et al. Role of mem- brane oxidation in controlling the activity of human group IIa secretory phospholipase A(2) toward apop- totic lymphoma cells. Biochim Biophys Acta. 2013; 1828(2):670-676. otwiera się w nowej karcie
  184. Yamanaka K, Saito Y, Sakiyama J, et al. A novel fluor- escent probe with high sensitivity and selective detection of lipid hydroperoxides in cells. RSC Adv. 2012;2(20):7894-7900. otwiera się w nowej karcie
  185. Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81-90. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 162 razy

Publikacje, które mogą cię zainteresować

Meta Tagi