Abstrakt
English speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive Parameter Elimination. The feature extraction process is explained, applied feature selection methods are presented and obtained results are discussed
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- materiały konferencyjne indeksowane w Web of Science
- Tytuł wydania:
- Multimedia and Network Information Systems : Proceedings of the 11th International Conference MISSI 2018 strony 490 - 500
- Język:
- angielski
- Rok wydania:
- 2018
- Opis bibliograficzny:
- Zaporowski S., Czyżewski A..: Selection of Features for Multimodal Vocalic Segments Classification, W: Multimedia and Network Information Systems : Proceedings of the 11th International Conference MISSI 2018, 2018, ,.
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-319-98677-4
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 147 razy
Publikacje, które mogą cię zainteresować
Investigating Feature Spaces for Isolated Word Recognition
- G. Korvel,
- G. Tamulevicus,
- P. Treigys
- + 2 autorów