Nie znaleźliśmy wyników w zadanych kryteriach!
Ale mamy wyniki w innych katalogach.Filtry
wszystkich: 13569
-
Katalog
- Publikacje 9091 wyników po odfiltrowaniu
- Czasopisma 191 wyników po odfiltrowaniu
- Konferencje 125 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 223 wyników po odfiltrowaniu
- Wynalazki 47 wyników po odfiltrowaniu
- Projekty 18 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Kursy Online 963 wyników po odfiltrowaniu
- Wydarzenia 25 wyników po odfiltrowaniu
- Dane Badawcze 2884 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: CONVOLUTIONAL NEURAL NETWORK, PEDESTRIAN DETECTION, ROBUSTNESS, STYLE-TRANSFER, DATA AUGMENTATION, UNCERTAINTY ESTIMATION
-
Toward Robust Pedestrian Detection With Data Augmentation
PublikacjaIn this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...
-
Evaluating calibration and robustness of pedestrian detectors
PublikacjaIn this work robustness and calibration of modern pedestrian detectors are evaluated. Pedestrian detection is a crucial perception com- ponent in autonomous driving and here we study its performance under different image corruptions. Furthermore, we provide analysis of classifi- cation calibration of pedestrian detectors and we show a positive effect of using style-transfer augmentation technique. Our analysis is aimed as a step...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Closer Look at the Uncertainty Estimation in Semantic Segmentation under Distributional Shift
PublikacjaWhile recent computer vision algorithms achieve impressive performance on many benchmarks, they lack robustness - presented with an image from a different distribution, (e.g. weather or lighting conditions not considered during training), they may produce an erroneous prediction. Therefore, it is desired that such a model will be able to reliably predict its confidence measure. In this work, uncertainty estimation for the task...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublikacjaIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...
-
Style Transfer for Detecting Vehicles with Thermal Camera
PublikacjaIn this work we focus on nighttime vehicle detection for intelligent traffic monitoring from the thermal camera. To train a Convolutional Neural Network (CNN) detector we create a stylized version of COCO (Common Objects in Context) dataset using Style Transfer technique that imitates images obtained from thermal cameras. This new dataset is further used for fine-tuning of the model and as a result detection accuracy on images...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublikacjaWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublikacjaThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...