Nie znaleźliśmy wyników w zadanych kryteriach!
Ale mamy wyniki w innych katalogach.Filtry
wszystkich: 22556
-
Katalog
- Publikacje 1423 wyników po odfiltrowaniu
- Czasopisma 547 wyników po odfiltrowaniu
- Konferencje 23 wyników po odfiltrowaniu
- Wydawnictwa 2 wyników po odfiltrowaniu
- Osoby 78 wyników po odfiltrowaniu
- Projekty 6 wyników po odfiltrowaniu
- Kursy Online 9 wyników po odfiltrowaniu
- Wydarzenia 2 wyników po odfiltrowaniu
- Dane Badawcze 20466 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: medical image annotation
-
Medical Image Dataset Annotation Service (MIDAS)
PublikacjaMIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...
-
Image simulation and annotation for color blinded
PublikacjaIn this paper methods for image simulation as seen by a color blinded and a method for constructing images of perceived color difference are presented. The work is also focused on the interactive color description of an image contents. As a result, the individuals having problems with color discrimination can identify colors in an image.W artykule prezentowane są metody symulacji kolorów w obrazach postrzeganych przez osoby ze...
-
Image simulation and annotation for color blinded
PublikacjaW pracy przedstawiono metody symulacji obrazów widzianych przez osoby ze ślepota barw. Ukazano również metody tworzenia obrazów ukazujących różnicę w percepcji kolorów pomiędzy normalnym obserwatorem a osobą ze ślepotą barw. W artykule opisano również metodę interaktywnego opisu koloru wskazywanego piksela obrazu. W rezultacie użytkownik ze ślepota barw może uzyskać informacje opisowe o występujących w obrazie kolorach.
-
Dependable Integration of Medical Image Recognition Components
PublikacjaComputer driven medical image recognition may support medical doctors in the diagnosis process, but requires high dependability considering potential consequences of incorrect results. The paper presentsa system that improves dependability of medical image recognition by integration of results from redundant components. The components implement alternative recognition algorithms of diseases in thefield of gastrointestinal endoscopy....
-
Image of Poland as perceived by German and British medical tourists
Publikacja -
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublikacjaRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Enhanced Medical Image Segmentation using CNN based on Histogram Equalization
Publikacja -
High Quality Medical Image-Guides By Mosaic-Assembling Optical Fibre Technology
Publikacja -
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...