Filtry
wszystkich: 591
wybranych: 98
Wyniki wyszukiwania dla: BISMUTH–TELLURIUM ALLOY
-
Ball on disk test AT4_41-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT4_41).
-
Ball on disk test AT3_2-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT3_2).
-
Ball on disk test AW4_4-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 WC powder injected (AW4_4).
-
Ball on disk test AW4_41-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 WC powder injected (AW4_41).
-
Macroscopic examination of CuNiFeR pipeline
Dane BadawczeCopper and nickel alloys called cunifers (Cu, Ni, Fe and R – rest of alloy elements) have found wide application in the production of ship pipeline components in contact with sea water, such as, for example, the main engine cooling system. These alloys are characterized by a very high corrosion resistance, which is ensured by appropriately carried out...
-
Microscopic examination of CuNiFeR pipeline
Dane BadawczeCopper and nickel alloys called cunifers (Cu, Ni, Fe and R – rest of alloy elements) have found wide application in the production of ship pipeline components in contact with sea water, such as, for example, the main engine cooling system. These alloys are characterized by a very high corrosion resistance, which is ensured by appropriately carried out...
-
Tensile test of part of CuNiFeR pipeline
Dane BadawczeCopper and nickel alloys called cunifers (Cu, Ni, Fe and R – rest of alloy elements) have found wide application in the production of ship pipeline components in contact with sea water, such as, for example, the main engine cooling system. These alloys are characterized by a very high corrosion resistance, which is ensured by appropriately carried out...
-
XRD patterns of TeOx-BaO-BiO powder
Dane BadawczeThe DataSet contains the XRD patterns of the TeOx-BaO-BiO powder. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor), barium carbonate, and bismuth carbonate with thetraetylene glycol, water, ethanol, and acetic acid. (Samples molar concentration: 73TeO2-4BaO-3Bi2O3 and 73TeO2-3BaO-4Bi2O3)....
-
The scanning spreading resistance microscopy (SSRM) of some CoCrMo alloys subjected to electrochemical litography
Dane BadawczeThe dataset contains the results of the experiment consisting of performing electrochemical lithography on the surface of the CoCrMo prosthetic alloy. First, by applying local anodic polarization, oxide structures were created on the surface of the material. Next, they were imaged in the SSRM (scanning spreading resistance microscopy) mode to visualize...
-
Identification of intermetallic phases in the structure of austenitic steel with use of Scanning Kelvin Probe Microscopy
Dane BadawczeDelta ferrite is formed in austenitic steels during the solidification of the alloy and its welds. It can also occur as a stable phase in any temperature range in high-alloy austenitic-ferritic steels. Depending on the amount, it can change into gamma and sigma phases and into ferrite with variable chromium content. The main role of delta ferrite in...
-
The microstructure of aluminium alloys AA1050 and AA7075 subjected to anodic polarization at 8V in KOH electrolyte
Dane BadawczeThe dataset contains SEM pictures of the microstructure of aluminum alloy AA1050 and AA7075 exposed in aqueous KOH in the pH range between 14–11. Two sets of samples are presented, revealing the topography of the alloys when exposed to aggressive media under open circuit potential conditions as well as when subjected potentiodynamic polarization ranging...
-
SEM micrographs of aluminium corrosion in alkaline media with various bee products as corrosion inhibitors
Dane BadawczeThis dataset contains various scanning electron microscopy (SEM) micrographs of AA5754 aluminum alloy samples exposed to the corrosive alkaline environment without and with the addition of various bee products to act as green corrosion inhibitors. The products are bee pollen, honey, and putty. They were investigated in bicarbonate buffer (pH =10 or...
-
The exemplary Kelvin probe microscopy studies of sensitized austenitic stainless steels
Dane BadawczeThe dataset summarizes the results of imaging the surface potential distribution using the Kelvin probe scanning technique. Due to the fact that the potential measured in this way is proportional to the electrochemical potential of metals or intermetallic phases, it is possible to assess the nobility differences of various alloy components. In the case...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Dane BadawczeData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
Plasmon resonance in gold-silver nanoalloys
Dane BadawczeSurface plasmon resonance (SPR) can lead to improve or formation a new linear or nonlinear optical phenomena. Especially it can enhance a light emission from luminescence materials. The presence of metal nanostructures or nanoparticles is necessary to excitation of the SPR. It is well known that gold and silver nanostructures exhibit plasmon resonance...
-
X-ray Photoelectron Spectroscopy studies of various carboxylic acids adsorption on aluminium alloys in alkaline media
Dane BadawczeThis dataset contains the results of high-resolution XPS studies obtained during evaluation of high corrosion inhibition efficiency of various carboxylic acids towards aluminium alloy 5754 in bicarbonate buffer pH=11.
-
TEM imaging of Ag-Au nanoalloys
Dane BadawczeThe nanostructures of AuAg nanoalloys were prepared by sequential sputtering of metal thin layers (Au/Ag or Ag/Au) followed by annealing under 550 Celsius degree in an argon atmosphere. The basic single layer thickness was usually ca. 3 nm. For investigations two samples wih 50% Au and 50% Ag were selected and samples 1/3 Ag - 2/3 Au and 2/3 Ag - 1/3...
-
The topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with confocal microscope
Dane BadawczeThe topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with confocal microscope.
-
The topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with AFM
Dane BadawczeThe topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with AFM.
-
Austenitic stainless steel sensitization
Dane BadawczeHigh-alloy steels, thanks to their composition and content of appropriate alloying additives, are characterized by increased resistance to many corrosive environments. However, this is due to the increased sensitivity of the described construction materials to specific environmental conditions during their use. An example may be the increased susceptibility...
-
Imaging of morphological and physicochemical changes occuring in the structure of austenitic steel due to the thermal sensitization
Dane BadawczeIn polycrystalline materials, grain boundaries are always where phenomena such as surface diffusion, sedimentation and corrosion occur. They have a significant impact on the macroscopic properties of the construction material [1]. In addition to inhomogeneities such as manganese sulphide inclusions formed during the metallurgical process, interfacial...
-
Imaging of the effects of pitting corrosion with the use of AFM
Dane BadawczePitting corrosion is a local attack on a metal surface, limited to a point or small area, which appears as a hole. Pitting corrosion is one of the most harmful forms of corrosion due to the fact that it is associated with small, difficult to detect damage, that can even lead to perforation of the structure. A single pit may range in size from micrometers...
-
API 5L X65 steel - fracture documentation of CMOD-force test in -10°C, across rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
Nanostructures fabrication with use of electrical AFM litography
Dane BadawczeIn the last 10 years, one of the nanotechnological trends has been observed, consisting in the development of new variants of computer memory systems with high capacity and speed of access, using quantum dots. One of the techniques for creating nanodots and other nanostructures is based on the use of an atomic force microscope acting as a lithographic...
-
API 5L X65 steel - CMOD-force record in -10°C, along rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - CMOD-force record in -10°C, across rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - fracture documentation of CMOD-force test in -10°C, along rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - tensile properties in room temperature -10°C, along rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - tensile properties in room temperature +20°C, across rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - tensile properties in room temperature -10°C, across rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...
-
API 5L X65 steel - tensile properties in room temperature +20°C, along rolling direction
Dane BadawczeSteel designated as API 5L X65 is often used for oil and gas transportation pipelines. It is caused due to its high ductility, weldability and good corrosion resistance. API 5L X65 is a low alloy steel with carbon content less than 0.3% (depends on delivery condition). Once installed, a pipeline remains in place for many years. Throughout its life,...