Filtry
wszystkich: 10832
wybranych: 640
-
Katalog
- Publikacje 7776 wyników po odfiltrowaniu
- Czasopisma 666 wyników po odfiltrowaniu
- Konferencje 47 wyników po odfiltrowaniu
- Osoby 362 wyników po odfiltrowaniu
- Wynalazki 3 wyników po odfiltrowaniu
- Projekty 48 wyników po odfiltrowaniu
- Laboratoria 3 wyników po odfiltrowaniu
- Zespoły Badawcze 2 wyników po odfiltrowaniu
- Kursy Online 792 wyników po odfiltrowaniu
- Wydarzenia 96 wyników po odfiltrowaniu
- Oferty 1 wyników po odfiltrowaniu
- Dane Badawcze 1036 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: COMPACT POWER DIVIDER, E-PLANE GROOVE GAP WAVEGUIDE, MMWAVE, RIDGE GAP WAVEGUIDE, WIDEBAND DESIGN.
-
Optical properties of tellurium dioxide thin films
Dane BadawczeTeO2 and TeO2 doped by Eu thin films manufactured by magnetron sputtering method were measured by optical spectroscopy. Metallic Te target and Te-Eu mosaic target with diameter of 50.8 mm were sputtered for about 45 min in argon-oxygen atmosphere what resulted in 300 nm film thickness deposition. The pressure in the chamber was below 0.2 Pa and substrate...
-
Test of the antimicrobial properties against E. coli of the innovative CS-2a preservative.
Dane BadawczeThe dataset contains the results of a single series of determinations of the antimicrobial properties against E. coli of the innovative CS-2 a preservative in the solution of model fluids.During the test, the infected product is inoculated (on chromogenic Coliform Agar) at specified intervals (0 min. [cs2a 0] and after 1 day-24 h of incubation [cs2a...
-
Test of the antimicrobial properties against E. coli of the innovative CS-2b preservative.
Dane BadawczeThe dataset contains the results of a single series of determinations of the antimicrobial properties against E. coli of the innovative CS-2 b preservative in the solution of model fluids.During the test, the infected product is inoculated (on chromogenic Coliform Agar) at specified intervals (0 min. [cs2b 0] and after 1 day-24 h of incubation [cs2b...
-
The dataset of coupling coefficients for rotating receiver of multicoil dynamic wireless power transfer system
Dane BadawczeThe provided dataset is part of the simulation results shown in related journal paper "Optimal Rotating Receiver Angles Estimation for Multicoil Dynamic Wireless Power Transfer".
-
Acetaminophen in Friction Ridge Skin Raman Spectra - acetaminophen (paracetamol) Reference and from drugs 2023
Dane BadawczeRaman spectra for acetaminophen (paracetamol) from different drugs and paracetamol reference.
-
Results of SEM examination of chitosan/Eudragit E 100 coatings electrophoretically deposited on the Ti grade 2 substrate
Dane BadawczeThe database contains the images of the microstructure of the coatings observed with the SEM scanning electron microscope. The chitosan/Eudragit E 100 coatings deposited on the Ti grade 2 substrate by an electrophoresis process were tested. Different process parameters like Eudragit E 100 concentration (0.25 g and 0.5 g in 100 mL of 1% (v/v) acetic...
-
Kolbudy 2021 E - video data - pedestrian, bicycles, vehicles
Dane BadawczeKolbudy 2021 E - video data - pedestrian, bicycles, vehicles
-
Correction of far-field measurements obtained in non-anechoic test site
Dane BadawczeThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for two geometrically small antenna structures: a spline-parameterized Vivaldi structure and a compact spline-based monopole. The responses have been obtained at the selected frequencies of interest as a function of mentioned structures...
-
Voltage fluctuations on the main switchgear of the industrial power system supplying the rolling mill motors
Dane BadawczeThe dataset presents the voltage waveforms on the bus bars of the main switchgear of the industrial power network for the supply of rolling mills. The data was recorded during an experiment whose purpose was to determine a level of short-term and long-term flicker caused by voltage fluctuations. In the virtual application of flickermeter, a hardware...
-
Data points of structures of R1233zd(E) flowing in a circular minichannel at low, medium and high values of saturation pressure
Dane BadawczeDatabase present structures of two-phase flow of R1233zd(E) in 3 mm vertical channel. Database contains datapoints which contain information of reduced pressure (ratio of saturation pressure and critical pressure), quality and mass velocity. 4 two phase structures are distinguished: bubbly flow, slug flow, intermittent flow and annular flow.
-
The dataset of simulations for optimal and non-optimal rotating receiver angles of multicoil dynamic wireless power transfer system
Dane BadawczeThe provided dataset is part of the simulation results shown in related journal paper "Optimal Rotating Receiver Angles Estimation for Multicoil Dynamic Wireless Power Transfer".
-
Radiation pattern measurements of geometrically small antennas performed in non-anechoic environments
Dane BadawczeThe dataset contains unprocessed measurements of radiation pattern characteristics performed in non-anechoic regime for three geometrically small antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, and a quasi-Yagi geometry with enhanced bandwidth. The responses have been obtained over broad frequency ranges...
-
Measurements of electrically small antenna radiation patterns in non-anechoic environments using TGM
Dane BadawczeThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for four antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, super-ultrawideband antenna, and a quasi-Yagi component. The responses have been obtained at the selected frequencies of interest...
-
A cumulative probability function of instantaneous flicker sensation values measured in the industrial power system supplying the rolling mill motors
Dane BadawczeThe dataset presents a cumulative probability function CPF of the instantaneous flicker sensation level measured on the bus bars of the main switchgear of the industrial power network for the supply of rolling mills. The data were obtained during an experiment whose purpose was to determine a level of short-term and long-term flicker caused by voltage...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Gdansk 2020, Obroncow Wybrzeza - crossing (E) street - video data - pedestrian, bicycles, vehicles
Dane BadawczeThe data contain video traffic data (pedestrian, cyclists, vehicles) registered at Obroncow Wybrzeza (E) street. Date 11.08.2020, 13:00-20:00. The video camera was installed around bicycle crossings and pedestrian crossings at Obroncow Wybrzeza – Chlopska crossing. Camera was mounted on 7-meter-high mast.
-
Wind speed, wind direction and solar radiation datasets; wind and solar energy resources analysis
Dane BadawczeDataset contain the results of wind speed, wind direction and solar radiation for wind and solar energy resources analysis performed in years 2008 and 2009. Application for efficiency and profitability of solar and wind power plants anaylsis and for energy generation forecasting algorithms design and anaysis. Datasets used in doctoral dissertations,...
-
Absorption and fluorescence spectrum the Diamond™ nucleic acid dye applied to DNA and friction ridge analysis from fingerprint traces
Dane BadawczeThe results of a study of the spectroscopic properties of Diamond™ dye binding to reference DNA and to DNA from a fingerprint using a UV/VIs spectrophotometer and a spectrofluorimeter are presented.
-
SkinDepth - synthetic 3D skin lesion database
Dane BadawczeSkinDepth is the first synthetic 3D skin lesion database. The release of SkinDepth dataset intends to contribute to the development of algorithms for:
-
Case Study NEB Atlas / part II - Autodesk Forma (formerly Spacemaker) / Battersea Power Station Development, London
Dane BadawczeThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to analysis housing estates already existed in various cities in Europe. The analyses ware done in real time with AI and powered for key factors such as sun hours, daylight potential, noise, wind, and microclimate. These data...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.