Filtry
wszystkich: 1576
wybranych: 126
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: JUBILEUSZ 80 LECIA
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 80 mA. Sample 41.
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 80 mA. Sample 41.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform surface...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,5 V at 80 mA. Sample 24
Dane BadawczeDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,5 V and discharged to 10 mV by constant current 80 mA. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform surface emission....
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 80 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 80 um (serie 1)
Dane BadawczeThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 80 um (serie 2)
Dane BadawczeThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 150 mm stroke subjected only to a mass load of 1100 g
Dane Badawcze -
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 100 mm stroke subjected only to a mass load of 1650 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 150 mm stroke subjected only to a mass load of 1650 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 100 mm stroke subjected only to a mass load of 900 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 150 mm stroke subjected only to a mass load of 2570 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 100 mm stroke subjected only to a mass load of 1100 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 100 mm stroke subjected only to a mass load of 2570 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 500 mm stroke subjected only to a mass load of 2570 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 300 mm stroke subjected only to a mass load of 1650 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 300 mm stroke subjected only to a mass load of 2570 g
Dane BadawczeThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
XRD patterns of TeOx-BaO-BiO powder
Dane BadawczeThe DataSet contains the XRD patterns of the TeOx-BaO-BiO powder. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor), barium carbonate, and bismuth carbonate with thetraetylene glycol, water, ethanol, and acetic acid. (Samples molar concentration: 73TeO2-4BaO-3Bi2O3 and 73TeO2-3BaO-4Bi2O3)....
-
Light transmission measurement through the fluidized bed photoreactor
Dane BadawczeDataset contains light transmission measurements through the fluidized bed photoreactor. Two sources of light were used: UV-LEDs and UV fluorescent. Measurements were performed at different air flows: 0, 80, 160 and 240 ml/min. The detailed measurement and equipment data was described in measurment info.txt file.
-
Thermal conductivity of M0-M100 specimens
Dane BadawczeThermal conductivity and volumetric heat capacity values of M0, M20, M40, M60, M80, M100 samples
-
Thermogravimetric measurement (TG) of 20wt.% Ce0.8La0.2O2-NiO-YSZ anode for DIR-SOFC
Dane BadawczeThe daataset includes the thermogravimetric measurement (TG) of Ce0.8La0.2O2-NiO-YSZ anode for DIR-SOFC. The mesurement was performed under synthestic air atmosphere. The anode was composed of NiO-YSZ cermet composite (80 wt%) and Ce0.8La0.2O2-s additive (20wt%) with the addition of poroformer - PMMA granules 8um diameter (40 vol.% of whole powder volume)....
-
Open porosity and oven-dry density of concretes containing magnetite aggregate (M0-M100) mixes
Dane BadawczeRaw data for determination of open porosity and oven-dry densities of concretes containing different amount of magnetite aggregate (M0-M100) mixes. Sample designation is related to the publication associated with dataset.
-
The XRD diffraction patterns of Ce0.9M0.1O2 prepared using the reverse microemulsion method
Dane BadawczeThe dataset includes XRD patterns of Ce0.9M0.1O2 (where M=Mn, Fe, Co, Ni, Cu) nanopowders prepared using the reverse microemulsion method. The powders were precipitated from organic-based solution using tetramethylammonium hydroxide (TMAOH). After the precipitation, the sediment was centrifuged and rinsed with alcohol several times. Precursors powder...
-
XRD patterns of the V2O5 nanorods after thermal treatment under reducing atmosphere
Dane BadawczeThe DataSet contains the XRD patterns of V2O5 nanorods after thermal treatment under a reducing atmosphere. Samples were annealed at 450C for 2, 20, and 40h under a reducing atmosphere (94% Ar, 6% H2).
-
XRD patterns of VO2 and V6O13 nanostructures
Dane BadawczeThe DataSet contains the XRD patterns of VO2 and V6O13 thin films deposited on a silicon substrate. The as-prepared thin films were annealing under a reducing atmosphere (94% Ar, 6% H2) at 500, 600 and 700C for 10h.
-
XRD patterns of V2O5 thin film morphology dependent on substrate types
Dane BadawczeThe DataSet contains the XRD patterns of the V2O5 thin film structure dependent on substrate types. The as-prepared thin films were deposited on alumina, zirconium, zirconium oxide and metallic vanadium substrate, then was annealing under an oxidizing atmosphere at 600C for 10h.
-
XRD patterns of V2O5 nanostructures
Dane BadawczeThe DataSet contains the XRD patterns of vanadium pentaoxide nanostructures obtained by the sol-gel with different annealing temperatures under synthetic air. The results show that crystallinity dependent on the annealing temperature.