Filtry
wszystkich: 1359
wybranych: 843
-
Katalog
- Publikacje 843 wyników po odfiltrowaniu
- Czasopisma 223 wyników po odfiltrowaniu
- Konferencje 218 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 57 wyników po odfiltrowaniu
- Aparatura Badawcza 1 wyników po odfiltrowaniu
- Kursy Online 9 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 2 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: ieee 11491, ieee 11494, ieee 11496, ieee 11497
-
On Bayesian Tracking and Prediction of Radar Cross Section
PublikacjaWe consider the problem of Bayesian tracking of radar cross section. The adopted observation model employs the gamma family, which covers all Swerling cases in a unified framework. State dynamics are modeled using a nonstationary autoregressive gamma process. The principal component of the proposed solution is a nontrivial gamma approximation, applied during the time update recursion. The superior performance of the proposed approach...
-
Reliable Multi-Stage Optimization of Antennas for Multiple Performance Figures in Highly-Dimensional Parameter Spaces
PublikacjaDesign of modern antenna structures needs to account for multiple performance figures and geometrical constraints. Fulfillment of these calls for the development of complex topologies described by a large number of parameters. EM-driven tuning of such designs is mandatory yet immensely challenging. In this letter, a new framework for multi-stage design optimization of multi-dimensional antennas with respect to several performance...
-
Design of Microwave-Based Angular Displacement Sensor
PublikacjaThis letter presents a novel microwave-based rotation sensor having a wide dynamic range to detect and measure the angular displacement in terms of the change in resonant frequency. The proposed sensor is based on the microstrip technology, where a rotor comprised of a complementary splitring resonator (CSRR) placed on the ground plane of the microstrip line is free to rotate around its axis. The mechanical rotation of CSRR determines...
-
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublikacjaComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine
PublikacjaIn this letter, it is shown how direction-of-arrival (DoA) estimation for electronically steerable parasitic array radiator (ESPAR) antennas, which are designed to be integrated within wireless sensor network nodes, can be improved by applying support vector classification approach to received signal strength (RSS) values recorded at an antenna's output port. The proposed method relies on ESPAR antenna's radiation patterns measured...
-
Regularized Local Multivariate Reduced-Order Models With Nonaffine Parameter Dependence
PublikacjaThis paper addresses a singular problem, not yet discussed in the literature, which occurs when parametric reduced-order models are created using a subspace projection approach with multiple concatenated projection bases. We show that this technique may lead to the appearance of localized artifacts in the frequency characteristics of a system, even when the reduced-order projection basis is rich enough to describe the original...
-
Reliable Greedy Multipoint Model-Order Reduction Techniques for Finite-Element Analysis
PublikacjaA new greedy multipoint model-order reduction algorithm for fast frequency-domain finite-element method simulations of electromagnetic problems is proposed. The location of the expansion points and the size of the projection basis are determined based on a rigorous error estimator. Compared to previous multipoint methods, the quality of the error estimator is significantly improved by ensuring the orthogonality of the projection...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublikacjaSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublikacjaIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Model Correction and Optimization Framework for Expedited EM-Driven Surrogate-Assisted Design of Compact Antennas
PublikacjaDesign of compact antennas is a numerically challenging process that heavily relies on electromagnetic (EM) simulations and numerical optimization algorithms. For reliability of simulation results, EM models of small radiators often include connectors which—despite being components with fixed dimensions—significantly contribute to evaluation cost. In this letter, a response correction method for antenna models without connector,...
-
Fast EM-driven optimization using variable-fidelity EM models and adjoint sensitivities
PublikacjaA robust and computationally efficient technique for microwave design optimization is presented. Our approach exploits variable-fidelity electromagnetic (EM) simulation models and adjoint sensitivities. The low-fidelity EM model correction is realized by means of space mapping (SM). In the optimization process, the SM parameters are optimized together with the design itself, which allows us to keep the number...
-
Greedy Multipoint Model-Order Reduction Technique for Fast Computation of Scattering Parameters of Electromagnetic Systems
PublikacjaThis paper attempts to develop a new automated multipoint model-order reduction (MOR) technique, based on matching moments of the system input–output function, which would be suited for fast and accurate computation of scattering parameters for electromagnetic (EM) systems over a wide frequency band. To this end, two questions are addressed. Firstly, the cost of the wideband reduced model generation is optimized by automating a...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublikacjaIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
RSS-based DoA Estimation Using ESPAR Antennas and Interpolated Radiation Patterns
PublikacjaIn this letter, it is shown how an algorithm, which employs received signal strength (RSS) values in order to estimate direction-of-arrival (DoA) of impinging signals in wireless sensor network (WSN) nodes equipped with electronically steerable parasitic array radiator (ESPAR) antennas, can easily be improved by applying an interpolation algorithm to radiation patterns recorded in the calibration phase of the DoA estimation process....
-
Simple 2-D Direction-of-Arrival Estimation Using an ESPAR Antenna
PublikacjaIn this letter, it has been shown how an electronically steerable parasitic array radiator (ESPAR) antenna can be used for 2-D direction-of-arrival (DoA) estimation employing received signal strength (RSS) values only. The proposed approach relies on changes in RSS values recorded at the antenna output port observed for different vertical and horizontal directions, while antenna’s main beam sweeps 360° area around the ESPAR antenna. Based...
-
A Stabilized Complex LOBPCG Eigensolver for the Analysis of Moderately Lossy EM Structures
PublikacjaThis letter proposes a stabilized locally optimal block preconditioned conjugate gradient method for computing selected eigenvalues for complex symmetric generalized non-Hermitian eigenproblems. Effectiveness of the presented approach is demonstrated for a moderately lossy dual-mode dielectric resonator, modeled using finite-element method with higher order elements
-
Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics
PublikacjaIn this letter, a design of experiments technique that permits uniform sampling in constrained domains is proposed. The discussed method is applied to generate training data for construction of fast replacement models (surrogates) of antenna input characteristics. The modeling process is design-oriented with the surrogate domain spanned by a set of reference designs optimized with respect to the performance figures and/or operating...
-
Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications
PublikacjaA new 60 GHz band single-input switched beam antenna is proposed for the fifth-generation (5G) millimeter-wave network applications. The presented design is capable of electronically switching the main beam in two different directions via a proposed microstrip-line-to-slotline single-pole dual-throw (SPDT) switch based on commercially available p-i-n diodes. The antenna is fabricated in a low-cost printed circuit board process...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublikacjaPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Adaptive Positioning Systems Based on Multiple Wireless Interfaces for Industrial IoT in Harsh Manufacturing Environments
PublikacjaAs the industrial sector is becoming ever more flexible in order to improve productivity, legacy interfaces for industrial applications must evolve to enhance efficiency and must adapt to achieve higher elasticity and reliability in harsh manufacturing environments. The localization of machines, sensors and workers inside the industrial premises is one of such interfaces used by many applications. Current localization-based systems...
-
A Series-Inclined-Slot-Fed Circularly Polarized Antenna for 5G 28-GHz Applications
PublikacjaThis letter presents the design of a single-point-fed, geometrically simple circularly polarized (CP) antenna for 28 GHz Ka-band applications. The proposed antenna is based on a straight microstrip line printed on one side and coupled with the nearly square patches through a 45-degree inclined V-shape slot aperture on the other side. In order to generate circular polarization, the fundamental radiating mode is degenerated at a...
-
Service-based Resilience via Shared Protection in Mission-critical Embedded Networks
PublikacjaMission-critical networks, which for example can be found in autonomous cars and avionics, are complex systems with a multitude of interconnected embedded nodes and various service demands. Their resilience against failures and attacks is a crucial property and has to be already considered in their design phase. In this paper, we introduce a novel approach for optimal joint service allocation and routing, leveraging virtualized...
-
Sphere Drive and Control System for Haptic Interaction With Physical, Virtual, and Augmented Reality
PublikacjaA system for haptic interaction with physical, virtual, and augmented realities, founded on drive and measurement elements (DMEs), is considered. The system consists of eight DME rolls equipped with linear actuators, able to measure their angular velocity, drive the sphere, and adjust downforce (pressing the roll against the sphere). Two modeling issues are addressed. Special effort is put in to compensate for various technical...
-
A Subspace-Splitting Moment-Matching Model-Order Reduction Technique for Fast Wideband FEM Simulations of Microwave Structures
PublikacjaThis article describes a novel model-order reduction (MOR) approach for efficient wide frequency band finite-element method (FEM) simulations of microwave components. It relies on the splitting of the system transfer function into two components: a singular one that accounts for the in-band system poles and a regular part that has no in-band poles. In order to perform this splitting during the reduction process, the projection...
-
Hybrid Analysis of Structures Composed of Axially Symmetric Objects
Publikacja— A hybrid method for the scattering problems in shielded and open structures is presented. The procedure is based on the combination of body-of-revolution involving finite-element methods with impedance matrix formulation and the mode-matching technique, which can be utilized for the analysis of structures with axially symmetrical scatterers. In order to confirm the validity and efficiency of the proposed approach, a few examples...
-
Efficient Finite Element Analysis of Axially Symmetrical Waveguides and Waveguide Discontinuities
PublikacjaA combination of the body-of-revolution and finite element methods is adopted for full-wave analysis of waveguides and waveguide discontinuities involving angular field variation. Such an approach is highly efficient and much more flexible than analytical techniques. The method is performed in two different cases: utilizing a generalized impedance matrix to determine the scattering parameters of a single waveguide section and utilizing...
-
Robustified estimators of radar elevation angle using a specular multipath model
PublikacjaWe consider the problem of estimating the elevation angle in the presence of multipath. The proposed method belongs to the class of maximum likelihood-like estimators and employs a modified specular reflection model that accounts for the uncertainty of the steering vector by assuming that they are subject to unknown deterministic perturbations with bounded norms. The analysis, performed using convex optimization methods, allows...
-
Feedline Alterations for Optimization-Based Design of Compact Super-Wideband MIMO Antennas in Parallel Configuration
PublikacjaThis letter presents a technique for size reduction of wideband multiple-input-multiple-output (MIMO) antennas. Our approach is a two-stage procedure. At the first stage, the antenna structure is modified to improve its impedance matching. This is achieved through incorporation of an n-section tapered feedline, followed by reoptimization of geometry parameters. Reducing the maximum in-band reflection well beyond the acceptance...
-
A Simple-Topology Compact Broadband Circularly Polarized Antenna With Unidirectional Radiation Pattern
PublikacjaIn this letter, a geometrically simple, reflector-backed single-point-fed circularly polarized (CP) antenna with unidirectional radiation pattern is presented. The structure comprises a simple coplanar waveguide (CPW) feeding circuit with an open slot etched on one side of the coplanar ground. The enhanced CP bandwidth is obtained by combining the loop mode, the slot mode, and the asymmetrical configuration of the coplanar ground...
-
A Highly Sensitive Planar Microwave Sensor for Detecting Direction and Angle of Rotation
PublikacjaThis article presents a technique based on a modified complementary split-ring resonator (CSRR) to detect angular displacement and direction of rotation with high resolution and sensitivity over a wide dynamic range. The proposed microwave planar sensor takes advantage of the asymmetry of the sensor geometry and measures the angle of rotation in terms of the change in the relative phase of the reflection coefficients. The sensor...
-
A Compact Circularly Polarized Antenna With Directional Pattern for Wearable Off-Body Communications
PublikacjaThis letter presents a geometrically simple and compact circularly polarized (CP) antenna with unidirectional radiation characteristics for off-body communications. The proposed antenna is based on a microstrip line monopole extension from a coplanar waveguide (CPW) and a protruded stub from one side of the coplanar ground plane along the length of the monopole. The orthogonal components of equal amplitudes required for circular...
-
Inverse Nonlinear Eigenvalue Problem Framework for the Synthesis of Coupled-Resonator Filters With Nonresonant Nodes and Arbitrary Frequency-Variant Reactive Couplings
PublikacjaA novel, general circuit-level description of coupledresonator microwave filters is introduced in this article. Unlike well-established coupling-matrix models based on frequency-invariant couplings or linear frequency-variant couplings (LFVCs), a model with arbitrary reactive frequencyvariant coupling (AFVC) networks is proposed. The engineered formulation is more general than prior-art ones—with the only restriction that the coupling...
-
An MOR Algorithm Based on the Immittance Zero and Pole Eigenvectors for Fast FEM Simulations of Two-Port Microwave Structures
PublikacjaThe aim of this article is to present a novel model-order reduction (MOR) algorithm for fast finite-element frequency-domain simulations of microwave two-port structures. The projection basis used to construct the reduced-order model (ROM) comprises two sets: singular vectors and regular vectors. The first set is composed of the eigenvectors associated with the poles of the finite-element method (FEM) state-space system, while...
-
Low-Cost Design Optimization of Microwave Passives Using Multi-Fidelity EM Simulations and Selective Broyden Updates
PublikacjaGeometry parameters of contemporary microwave passives have to be carefully tuned in the final stages of their design process to ensure the best possible performance. For reliability reasons, the tuning has to be to be carried out at the level of full-wave electromagnetic (EM) simulations. This is because traditional modeling methods are incapable of quantifying certain phenomena that may affect operation and performance of these...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublikacjaThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublikacjaThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...
-
Microwave Characterization of Dielectric Sheets in a Plano-Concave Fabry-Perot Open Resonator
PublikacjaDespite its long history, a double-concave (DC) Fabry-Perot open resonator (FPOR) has recently gained popularity in the characterization of dielectrics in the 20–110 GHz range, mainly due to such novel accomplishments as full automation of the measurement process and the development of even ore accurate and computationally efficient electromagnetic model. However, it has been discovered that such a DC resonator suffers from unwanted...
-
Inverse Modeling and Optimization of CSRR-based Microwave Sensors for Industrial Applications
PublikacjaDesign optimization of multivariable resonators is a challenging topic in the area of microwave sensors for industrial applications. This paper proposes a novel methodology for rapid re-design and parameter tuning of complementary split-ring resonators (CSRRs). Our approach involves inverse surrogate models established using pre-optimized resonator data as well as analytical correction techniques to enable rapid adjustment of geometry...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublikacjaDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Modal FEM Analysis of Ferrite Resonant Structures
PublikacjaThe finite-element method (FEM) is applied for modal analysis of ferrite-loaded spherical resonators. To improve the efficiency of the numerical calculations, the body-of-revolution (BOR) technique is utilized. Due to the frequency-dependent ferrite permeability, FEM leads to a nonlinear eigenvalue problem that is challenging to solve. To this end, Beyn’s method is proposed. The effectiveness of the proposed approach is confirmed...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublikacjaPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
Dispersive Delay Structures With Asymmetric Arbitrary Group-Delay Response Using Coupled-Resonator Networks With Frequency-Variant Couplings
PublikacjaThis article reports the design of coupled-resonatorbased microwave dispersive delay structures (DDSs) with arbitrary asymmetric-type group delay response. The design process exploits a coupling matrix representation of the DDS circuit as a network of resonators with frequency-variant couplings (FVCs). The group delay response is shaped using complex transmission zeros (TZs) created by dispersive cross-couplings. We also present an...
-
Two-Row ESPAR Antenna with Simple Elevation and Azimuth Beam Switching
PublikacjaIn this letter, we propose a two-row electronically steerable parasitic array radiator (ESPAR) antenna designed for direction of arrival (DoA) estimation in Internet of Things (IoT) applications relying on simple microcontrollers. The antenna is capable of elevation and azimuth beam switching using a simple microcontroller-oriented steering circuit and provides 18 directional radiation patterns, which can be grouped in 3 distinctive...
-
Multiuser Stereoscopic Projection Techniques for CAVE-Type Virtual Reality Systems
PublikacjaDespite the development of increasingly popular head mounted displays, CAVE-type systems may still be considered one of the most immersive virtual reality systems with many advantages. However, a serious limitation of most CAVE-type systems is the generation of a three-dimensional (3-D) image from the perspective of only one person. This problem is significant because in some applications, the participants must cooperate with each...
-
Supervised-learning-based development of multi-bit RCS-reduced coding metasurfaces
PublikacjaCoding metasurfaces have been introduced as efficient tools allowing meticulous control over the electromagnetic (EM) scattering. One of their relevant application areas is radar cross section (RCS) reduction, which principally relies on the diffusion of impinging EM waves. Despite its significance, careful control of the scattering properties poses a serious challenge at the level of practical realization. This article is concerned...
-
Inception and Propagation of Electrical Trees in the Presence of Space Charge in HVAC Extruded Cables
PublikacjaThis paper presents the space charge impact on the inception and propagation of electrical trees in cross-linked polyethylene (XLPE) insulation via simulations and experimentation. A 3D finite element analysis (FEA)-based modeling is proposed to simulate electrical trees via a needle embedded on the XLPE insulation. The proposed FEA model demonstrates the influence of the space charge magnitude and polarity on the initiation of...
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublikacjaAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublikacjaFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
High-Gain Compact Circularly Polarized X-Band Superstrate Antenna for CubeSat Applications
PublikacjaIn this letter, a concept of high-gain circularly polarized X-band antenna employing a partially reflecting surface (PRS) has been presented. In the initial antenna analysis, the influence of parasitic elements size in the PRS structure on antenna radiation pattern parameters has been investigated and the optimal arrangement of the elements has been identified. The proposed antenna provides wide bandwidth of return loss above 10...
-
Binary Grating of Subwavelength Silver and Quantum Wires as a Photonic-Plasmonic Lasing Platform With Nanoscale Elements
Publikacja