Filtry
wszystkich: 1126
-
Katalog
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: COMPACT MICROWAVE CIRCUITS
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublikacjaThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization
PublikacjaMiniaturization of microwave hybrid couplers is important for contemporary wireless communication engineering. Using standard computer-aided design methods for development of compact structures is extremely challenging due to a general lack of computationally efficient and accurate simulation models. Poor accuracy of available equivalent circuits results from neglecting parasitic cross-couplings that greatly affect the performance...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublikacjaDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers
PublikacjaFull-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical...
-
Accelerated design optimization of miniaturized microwave passives by design reusing and Kriging interpolation surrogates
PublikacjaElectromagnetic (EM) analysis has become ubiquitous in the design of microwave components and systems. One of the reasons is the increasing topological complexity of the circuits. Their reliable evaluation—at least at the design closure stage—can no longer be carried out using analytical or equivalent network representations. This is especially pertinent to miniaturized structures, where considerable EM cross-coupling effects occurring...
-
Rapid simulation-driven design of miniaturised dual-band microwave couplers by means of adaptive response scaling
PublikacjaOne of the major challenges in the design of compact microwave structures is the necessity of simultaneous handling of several objectives and the fact that expensive electromagnetic (EM) analysis is required for their reliable evaluation. Design of multi-band circuits where performance requirements are to be satisfied for several frequencies at the same time is even more difficult. In this work, a computationally efficient design...
-
Direct Constraint Control for EM-Based Miniaturization of Microwave Passives
PublikacjaHandling constraints imposed on physical dimensions of microwave circuits has become an important design consideration over the recent years. It is primarily fostered by the needs of emerging application areas such as 5G mobile communications, internet of things, or wearable/implantable devices. The size of conventional passive components is determined by the guided wavelength, and its reduction requires topological modifications,...
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublikacjaThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublikacjaThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublikacjaContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
Krzysztof Nyka dr hab. inż.
OsobyKrzysztof Nyka, absolwent Wydziału Elektroniki Telekomunikacji i Informatyki Politechniki Gdańskiej (WETI PG), gdzie uzyskał tytuł magistra inżyniera (1986, telekomunikacja) stopień doktora nauk technicznych (2002, elektronika) i doktora habilitowanego (2020 automatyka, elektronika i elektrotechnika). Obecnie jest zatrudniony na stanowisku profesora uczelni w Katedrze Inżynierii Mikrofalowej i Antenowej WETI PG. Zainteresowania...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublikacjaThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublikacjaIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Modelling of dielectric properties of BiNbO4-based microwave ceramics
PublikacjaIn the present paper results of the studies devoted to computer simulations of dielectric response of electroceramics in a frequency domain as well as analysis of the experimental data are given. As an object of investigations BiNbO4-based microwave ceramics was taken. Simulations of the hypothetical impedance response of the ceramic system were performed under assumption of the brick-layer model. A strategy for analysis and modelling...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Rapid design optimization of compact couplers using response features and adjoint sensitivities
PublikacjaA technique for rapid EM-driven design optimization of compact microwave couplers is presented. Our approach exploits response features and adjoint sensitivities and allows for low-cost design closure both in terms of performance enhancement and structure miniaturization. It is demonstrated using a compact rat-race coupler working at 1 GHz and compared to adjoint-based gradient optimization.
-
Rapid surrogate-assisted statistical analysis of compact microstrip couplers
PublikacjaIn this paper, a technique for low-cost statistical analysis and yield estimation of compact microwave couplers has been presented. The analysis is executed at the level of a fast surrogate model representing selected characteristic points of the coupler response that are critical to determine satisfaction/violation of the prescribed design specifications. Because of less nonlinear dependence of the characteristic points on geometry...
-
A robust design of a numerically demanding compact rat-race coupler
PublikacjaA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
Step on It Bringing Fullwave Finite-Element Microwave Filter Design up to Speed
PublikacjaThere are many steps in the design of a microwave filter: mathematically describing the filter characteristics, representing the circuit as a network of lumped elements or as a coupling matrix, implementing the distributed elements, finding the initial dimensions of the physical structure, and carrying out numerical tuning using electromagnetic (EM) simulators. The whole process is painstaking and time-consuming, and it requires...
-
Low-Cost Automated Design of Compact Branch-Line Couplers
PublikacjaBranch-line couplers (BLCs) are important components of wireless communication systems. Conventional BLCs are often characterized by large footprints which make miniaturization an important prerequisite for their application in modern devices. State-of-the-art approaches to design of compact BLCs are largely based on the use of high-permittivity substrates and multi-layer topologies. Alternative methods involve replacement of transmission-line...
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublikacjaOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
A novel microstrip dual-layer rat-race coupler with compact size and enhanced bandwidth
PublikacjaMicrowave hybrid couplers are crucial components of mixers, phase shifters, amplifiers and other high-frequency systems. Conventional couplers are characterized by large size which limits their usefulness in modern applications. In this work, a novel compact rat-race coupler with enhanced bandwidth has been proposed. The structure consists of six compact microstrip resonant cells. It is implemented on two separate layers which permits...
-
A Goal-Oriented Error Estimator for Reduced Basis Method Modeling of Microwave Devices
PublikacjaThis letter proposes a novel a-posteriori error estimator suitable for the reduced order modeling of microwave circuits. Unlike the existing error estimators based on impedance function residuals, the new one exploits the residual error associated with the computation of the scattering matrix. The estimator can be effectively used in the Reduced Basis Method (RBM) to automatically generate reduced-order models. The results of numerical...
-
Size Reduction of Microwave Couplers by EM-Driven Optimization
PublikacjaThis work addresses simulation-driven design optimization of compact microwave couplers that explicitly aims at circuit footprint area reduction. The penalty function approach allows us to minimize the area of the circuit while ensuring a proper power division between the output ports and providing a sufficient bandwidth with respect to return loss and isolation around the operating frequency. Computational cost of the optimization...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublikacjaIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Performance‐driven modeling of compact couplers in restricted domains
PublikacjaFast surrogate models can play an important role in reducing the cost of EM-driven design closure of miniaturized microwave components. Unfortunately, construction of such models is challenging due to curse of dimensionality and wide range of geometry parameters that need to be included in order to make it practically useful. In this letter, a novel approach to design-oriented modeling of compact couplers is presented. Our method...
-
The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
PublikacjaThis article introduces shape deformation as a new approach to the computer-aided design (CAD) of high-frequency components. We show that geometry deformation opens up new design possibilities and offers additional degrees of freedom in the 3-D modeling of microwave structures. Such design flexibility is highly desirable if the full potential of additive manufacturing (AM) is to be exploited in the fabrication of RF and microwave...
-
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
PublikacjaThis paper presents a novel frequencyreconfigurable self-diplexing antenna (SDA) utilizing a hybrid substrate-integrated waveguide (SIW). The antenna comprises a radiating slot, a feeding network, and a hybrid SIW cavity featuring half-mode circular and half-mode rectangular SIW structures. The unique feature of this antenna lies in its fine-tuning capability of each resonant frequency by inserting or injecting solid and liquid...
-
Study of the Effectiveness of Model Order Reduction Algorithms in the Finite Element Method Analysis of Multi-port Microwave Structures
PublikacjaThe purpose of this paper is to investigate the effectiveness of model order reduction algorithms in finite element method analysis of multi-port microwave structures. Consideration is given to state of the art algorithms, i.e. compact reduced-basis method (CRBM), second-order Arnoldi method for passive-order reduction (SAPOR), reduced-basis methods (RBM) and subspace-splitting moment-matching MOR (SSMM-MOR)
-
Low-Cost Surrogate Modeling of Miniaturized Microwave Components Using Nested Kriging
PublikacjaIn the paper, a recently reported nested kriging methodology is employed for modeling of miniaturized microwave components. The approach is based on identifying the parameter space region that contains high-quality designs, and, subsequently, rendering the surrogate in this subset. The results obtained for a miniaturized unequal-power-split rat-race coupler and a compact three-section impedance transformer demonstrate reliability...
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublikacjaThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...
-
Zero-Pole Approach in Microwave Passive Circuit Design
PublikacjaIn this thesis, optimization strategies for design of microwave passive structures including filters, couplers, antenna and impedance transformer and construction of various surroogate models utilized to fasten the design proces have been discussed. Direct and hybrid optimization methodologies including space mapping and multilevel algorithms combined with various surrogate models at different levels of fidelity have been utilized...
-
Low-cost multiband compact branch-line coupler design using response features and automated EM model fidelity adjustment
PublikacjaDesign closure of compact microwave components is a challenging problem because of significant electromagnetic (EM) cross-couplings in densely arranged layouts. A separate issue is a large number of designable parameters resulting from replacement of conventional transmission line sections by compact microstrip resonant cells. This increases complexity of the design optimization problem and requires employment of expensive high-fidelity...
-
Fast geometry scaling of miniaturized microwave couplers with power split correction
PublikacjaRedesigning a microwave circuit for various operating conditions is a practically important yet challenging problem. The purpose of this article is development and presentation of a technique for fast geometry scaling of miniaturized microwave couplers with respect to operating frequency. Our approach exploits an inverse surrogate model constructed using several reference designs that are optimized for a set of operating frequencies...
-
Compressed Projection Bases for Model-Order Reduction of Multiport Microwave Components Using FEM
PublikacjaThis paper presents a projection basis compression technique for generating compact reduced-order models (ROM) in the FE analysis of microwave devices. In this approach redundancy is removed from the projection basis by means of the proper orthogonal decomposition technique applied to the projected system of linear equations. Compression allows for keeping the size of a reduced-order model as small as possible without compromising...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublikacjaSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Accelerated multi-objective design of miniaturized microwave components by means of nested kriging surrogates
PublikacjaDesign of microwave components is an inherently multiobjective task. Often, the objectives are at least partially conflicting and the designer has to work out a suitable compromise. In practice, generating the best possible trade‐off designs requires multiobjective optimization, which is a computationally demanding task. If the structure of interest is evaluated through full‐wave electromagnetic (EM) analysis, the employment of...
-
Low-Cost Design Optimization of Microwave Passives Using Multi-Fidelity EM Simulations and Selective Broyden Updates
PublikacjaGeometry parameters of contemporary microwave passives have to be carefully tuned in the final stages of their design process to ensure the best possible performance. For reliability reasons, the tuning has to be to be carried out at the level of full-wave electromagnetic (EM) simulations. This is because traditional modeling methods are incapable of quantifying certain phenomena that may affect operation and performance of these...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublikacjaManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
A Subspace-Splitting Moment-Matching Model-Order Reduction Technique for Fast Wideband FEM Simulations of Microwave Structures
PublikacjaThis article describes a novel model-order reduction (MOR) approach for efficient wide frequency band finite-element method (FEM) simulations of microwave components. It relies on the splitting of the system transfer function into two components: a singular one that accounts for the in-band system poles and a regular part that has no in-band poles. In order to perform this splitting during the reduction process, the projection...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublikacjaFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports
PublikacjaA novel structure for a four-port microstrip magic-T junction is presented. The device is composed of microstrip and slotline circuits etched onto two sides of a dielectric substrate. The device is extremely compact and occupies an area more than three times smaller than similar structures recently reported in the literature. The novelty of the device lies in the use of microstrip/slotline transitions for both input ports: summation...
-
Reliable Microwave Modeling By Means of Variable-Fidelity Response Features
PublikacjaIn this work, methodologies for low-cost and reliable microwave modeling are presented using variable-fidelity response features. The two key components of our approach are: (i) a realization of the modeling process at the level of suitably selected feature points of the responses (e.g., S-parameters vs. frequency) of the structure at hand, and (ii) the exploitation of variable-fidelity EM simulation data, also for the response...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublikacjaIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublikacjaParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Reduced-cost optimization-based miniaturization of microwave passives by multi-resolution EM simulations for internet of things and space-limited applications
PublikacjaStringent performance specifications along with constraints imposed on physical dimensions, make the design of contemporary microwave components a truly onerous task. In recent years, the latter demand has been growing in importance, with the innovative application areas such as Internet of Things coming into play. The need to employ full-wave electromagnetic (EM) simu-lations for response evaluation, reliable yet CPU heavy, only...
-
On the low-cost design of abbreviated multisection planar matching transformer
PublikacjaA numerically demanding wideband matching transformer composed of three nonuniform transmission lines (NUTLs) has been designed and optimized at a low computational cost. The computational feasibility of the design has been acquired through the exploitation of low-fidelity NUTL models in most steps of the design procedure and an implicit space mapping optimization engine, providing high accuracy results with only a handful of EM...
-
On Decision-Making Strategies for Improved-Reliability Size Reduction of Microwave Passives: Intermittent Correction of Equality Constraints and Adaptive Handling of Inequality Constraints
PublikacjaDesign optimization of passive microwave components is an intricate process, especially if the primary objective is a reduction of the physical size of the structure. The latter has become an important design consideration for a growing number of modern applications (mobile communications, wearable/implantable devices, internet of things), where miniaturization is imperative due to a limited space allocated for the electronic circuitry....