Wyniki wyszukiwania dla: ELECTROMAGNETIC SIMULATION
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublikacjaSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublikacjaAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublikacjaGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublikacjaFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublikacjaDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublikacjaThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublikacjaOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Accelerated Parameter Tuning of Antenna Structures by Means of Response Features and Principal Directions
PublikacjaPopularity of numerical optimization has been steadily on the rise in the design of modern antenna systems. Resorting to mathematically rigorous parameter tuning methods is a matter of practical necessity as interactive techniques (e.g., parameter sweeping) are no longer adequate when handling several performance figures over multi-dimensional parameter spaces. The most common design scenarios involve local tuning since decent...
-
Design of novel highly sensitive sensors for crack detection in metal surfaces: theoretical foundation and experimental validation
PublikacjaThe application of different types of microwave resonators for sensing cracks in metallic structures has been subject of many studies. While most studies have been focused on improving the sensitivity of planar crack sensors, the theoretical foundation of the topic has not been treated in much detail. The major objective of this study is to perform an exhaustive study of the principles and theoretical foundations for crack sensing...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublikacjaThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
-
Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
PublikacjaElectromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublikacjaThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublikacjaDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublikacjaQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublikacjaFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublikacjaDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
PublikacjaDesign of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublikacjaFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublikacjaUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublikacjaSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
EM-Driven Size Reduction and Multi-Criterial Optimization of Broadband Circularly-Polarized Antennas Using Pareto Front Traversing and Design Extrapolation
PublikacjaMaintaining small size has become an important consideration in the design of contemporary antenna structures. In the case of broadband circularly polarized (CP) antennas, miniaturization is a challenging process due to the necessity of simultaneous handling of electrical and field properties (reflection, axial ratio, gain), as well as ensuring sufficient frequency range of operation, especially at the lower edge of the antenna...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublikacjaThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublikacjaDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublikacjaThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Inline Waveguide Sharp-Rejection Bandpass Filters With Transmission Zeros Using Resonant Coupling Slots
PublikacjaThis work presents a design methodology for synthesizing a category of compact inline sharp-rejection waveguide cavity bandpass filters based on novel frequency-variant coupling (FVC) structures. These FVCs consist of a rectangular slot placed in the top broadwall of the WR-90 rectangular waveguide and loaded with an additional top cavity above the slot coupled through the slot. Both the slot and the top cavity resonate in the...
-
Knowledge-based performance-driven modeling of antenna structures
PublikacjaThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublikacjaThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublikacjaDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Low-cost multiband four-port phased array antenna for sub-6 GHz 5G applications with enhanced gain methodology in Radio-over-fiber systems using modulation instability
PublikacjaPhased array antenna (PAA) technology is essential for applications requiring high gain and wide bandwidth, such as sensors, medical, and 5G. Achieving such a design, however, is a challenging and intricate process that calls for precise calculations and a combination of findings to alter the phase and amplitude of each unit. Furthermore, coupling effects between these PAA structure elements can only be completed with the use of...
-
Ultra-Wideband Vivaldi Antenna with an Integrated Noise-Rejecting Parasitic Notch Filter for Online Partial Discharge Detection
PublikacjaPower transformers and gas-insulated switchgear (GIS) play crucial roles in electrical power grids. However, they may suffer from degradation of insulation material due to wear and tear, leading to their imminent failure. Partial discharges (PDs) are an initial sign of insulation materials degradation which emit signals spanning various physical domains, including electromagnetic. PDs are temporally narrow, high-frequency, stochastic...
-
Ultra-Compact Quintuple-Band Terahertz Metamaterial Biosensor for Enhanced Blood Cancer Diagnostics
PublikacjaCancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors. Therefore, early detection is crucial as it enhances treatment outcomes and improves...
-
The influence of electromagnetic pollution on living organisms – historical trends and forecasting changes
PublikacjaCurrent technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. Wireless and radio communication, electric power transmission or devices in daily use such as smartphones, tablets and portable computers every day expose people...
-
Generalization of Kramers-Krönig relations for evaluation of causality in power-law media
PublikacjaClassical Kramers-Krönig (K–K) relations connect real and imaginary parts of the frequency-domain response of a system. The K–K relations also hold between the logarithm of modulus and the argument of the response, e.g. between the attenuation and the phase shift of a solution to a wave-propagation problem. For square-integrable functions of frequency, the satisfaction of classical K–K relations implies causality in the time domain....
-
Influence of electric, magnetic and electromagnetic fields on the circadian system – current stage of knowledge
PublikacjaOne of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues and...
-
Time-domine Dipole Fields in acoustic and Elektromagnetics
PublikacjaThe ultrawideband (UWB) radio technique presents a challenge not just for technology. The UWB carrier-free pulses act at a close distance, their electromagnetic fields being very different from classic monochromatic plane wave. The author proposes to adapt a time-domian approach to analysis of broadband spherical fields, both acoustic and electromagnetic, in fundamental cases of quasi-point physical sources.
-
Reverberation chamber in emc tests of naval systems
PublikacjaPaper covers the techniques of emission and immunity testing to the electromagnetic field in reverberation chamber. The procedure of he chamber calibration and field homogeneity assessment were covered. The naval forces' product as selected as an example for discussing the testing procedure in the chamber. The paper's summary gives the assortment of methodology in radiation emission testing and immunity to the electromagnetic field...
-
Data obtained by numerical simulation for X-ray focusing using a finite difference method
Dane BadawczeThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied.
-
Objective selection of minimum acceptable mesh refinement for EMC simulations
PublikacjaOptimization of computational electromagnetics (CEM) simulation models can be costly in both time and computing resources. Mesh refinement is a key parameter in determining the number of unknowns to be processed. In turn, this controls the time and memory required for a simulation. Hence, it is important to use only a mesh that is good enough for the objectives of the simulation, whether for direct handling of high-fidelity EM...
-
Revisiting Toroidal Dipolar Moment in Planar Metamaterial
PublikacjaThis article revisits the electric, magnetic, and toroidal dipolar moments in the metamaterial structure and presents the flatland design for generating a toroidal dipolar response for the electromagnetic plane wave at normal incidence. Based on the numerical analysis of the surface current, the electric field, the magnetic field, and the quantitative analysis of scattered power supported by the electromagnetic multipole theory,...
-
EMC disturbances in connection of driving system
PublikacjaIt is known the steep voltage changes caused by IGBT frequency inverters may cause some electromagnetic problems in driving system. Special dU/dt type as well as sinusoidal filters are used in order to limit the level of the disturbances. The paper presents investigation results of EMC disturbances in inverter supplied induction motor. Experiments have proved that disturbances in current connection differ essentially. Important...
-
GPR simulations for diagnostics of a reinforced concrete beam
PublikacjaThe most popular technique for modelling of an electromagnetic field, the finite difference time domain (FDTD) method, has recently become a popular technique as an interpretation tool for ground penetrating radar (GPR) measurements. The aim of this study is to detect the size and the position of damage in a reinforced concrete beam using GPR maps. Numerical simulations were carried out using the finite differ-ence time domain...
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublikacjaIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
Asymmetrical Modes in Polyphase Motors and Drives
PublikacjaThe effect of power supply and/or motor asymmetry on the phase-load distribution and the ripple of electromagnetic torque in a polyphase drive is studied by the method of symmetrical components. It is shown that the presence of asymmetry causes the mapping of all harmonics in the supply voltage into all planes of symmetrical components and eliminates the possibility of independent control of harmonics. The dynamic model of a five-phase...
-
A Note on Fractional Curl Operator
PublikacjaIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...