Wyniki wyszukiwania dla: COMPACT STRUCTURES
-
Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures
PublikacjaMiniaturization is one of the important concerns of contemporary wireless communication systems, especially regarding their passive microwave components, such as filters, couplers, power dividers, etc., as well as antennas. It is also very challenging, because adequate performance evaluation of such components requires full-wave electromagnetic (EM) simulation, which is computationally expensive. Although high-fidelity EM analysis...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublikacjaPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublikacjaCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
High-symmetry compact structures are preferred equilibrium configurations of Li n F n+1 − ( n = 2–5) superhalogen anions
Publikacja -
Low-cost multi-objective design of compact microwave structures using domain patching
PublikacjaA good compromise between size and electrical performance is an important design consideration for compact microwave structures. Comprehensive information about size/performance trade-offs can be obtained through multi-objective optimization. Due to considerable electromagnetic (EM) cross-couplings in highly compressed layouts, the design process has to be conducted at the level of high-fidelity EM analysis which is computationally...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublikacjaIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Improved selectivity compact band-stop filter with gosper fractal-shaped defected ground structures
PublikacjaA novel band-stop filter using Gosper fractal-shaped defected ground structures has been designed and manufactured. The improvement in the filter selectivity has been achieved by introducing a multiresonance fractal-shaped defect leading to a higher filter order, simultaneously maintaining its compact size. The experimental results prove the validity of proposed solution and its utility in novel miniaturized and severe requirement...
-
Design of Compact and Wideband Groove Gap Waveguide-Based Directional Couplers
PublikacjaThis paper proposes a compact cross-shaped groove gap waveguide structure for creating wideband and compact directional couplers with different coupling levels. Groove gap waveguide technology is applied to overcome fabrication challenges of printed and hollow waveguide structures in high frequency bands. The validity of the novel concept is demonstrated through the design and evaluation of several compact broadband directional...
-
Rapid Simulation-Driven Multiobjective Design Optimization of Decomposable Compact Microwave Passives
PublikacjaIn this paper, a methodology for fast multiobjective optimization of the miniaturized microwave passives has been presented. Our approach is applicable to circuits that can be decomposed into individual cells [e.g., compact microstrip resonant cells (CMRCs)]. The structures are individually modeled using their corresponding equivalent circuits and aligned with their accurate, EM simulated...
-
Expedited Geometry Scaling of Compact Microwave Passives by Means of Inverse Surrogate Modeling
PublikacjaIn this paper, the problem of geometry scaling of compact microwave structures is investigated. As opposed to conventional structures (i.e., constructed using uniform transmission lines), re-design of miniaturized circuits (e.g., implemented with artificial transmission lines, ATSs) for different operating frequencies is far from being straightforward due to considerable cross-couplings between the circuit components. Here, we...
-
Expedited two-objective dimension scaling of compact microwave passives using surrogate models
PublikacjaGeometry scaling of compact microwave structures is a challenging problem because of complex relationships between the physical dimensions and electrical characteristics, mostly caused by considerable cross-couplings in densely arranged layouts. Here, a procedure for expedited dimension scaling of compact microwave couplers with respect to two independent criteria has been presented. Our approach involves inverse surrogate models...
-
A robust design of a numerically demanding compact rat-race coupler
PublikacjaA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
Numerical optimization of planar antenna structures using trust-region algorithm with adaptively adjusted finite differences
Dane BadawczeThe dataset contains initial designs and optimization results for three planar structures that include quasi-patch antenna for WLAN applications, compact spline-parameterized monopole dedicated for ultra-wideband applications, as well as rectifier for energy harvesting with enhanced bandwidth. The numerical results for the first two structures are also...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublikacjaA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
A novel microstrip dual-layer rat-race coupler with compact size and enhanced bandwidth
PublikacjaMicrowave hybrid couplers are crucial components of mixers, phase shifters, amplifiers and other high-frequency systems. Conventional couplers are characterized by large size which limits their usefulness in modern applications. In this work, a novel compact rat-race coupler with enhanced bandwidth has been proposed. The structure consists of six compact microstrip resonant cells. It is implemented on two separate layers which permits...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublikacjaIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
Filtering EBG Structures Implemented in Coplanar Waveguide Feedline of Planar Slot Antenna
PublikacjaA novel compact dual-band slot antenna fed by a coplanar waveguide (CPW) incorporating electromagnetic band gap (EBG) structures has been proposed. At first, a classic wideband slot antenna fed by a CPW, dedicated to work in 2 ÷ 18 GHz band, has been designed. Subsequently, by adding simple EBG filtering structures into a CPW feedline, a dual-band performance ranging from 2.5 to 5.3 GHz and from 13.5 to 16.3 GHz, with the voltage...
-
Compact 4 × 4 butler matrix with non‐standard phase differences for IoT applications
PublikacjaButler matrices represent a popular class of feeding networks for antenna arrays. Large dimensions and the lack of flexibility in terms of achievable output phase difference make conventional Butler structures of limited use for modern communication devices. In this work, a compact planar 4 × 4 matrix with non-standard relative phase shifts of –30º, 150º, –120º, and 60º has been proposed. The structure is designed to operate at...
-
Study of the Effectiveness of Model Order Reduction Algorithms in the Finite Element Method Analysis of Multi-port Microwave Structures
PublikacjaThe purpose of this paper is to investigate the effectiveness of model order reduction algorithms in finite element method analysis of multi-port microwave structures. Consideration is given to state of the art algorithms, i.e. compact reduced-basis method (CRBM), second-order Arnoldi method for passive-order reduction (SAPOR), reduced-basis methods (RBM) and subspace-splitting moment-matching MOR (SSMM-MOR)
-
Fast surrogate-assisted simulation-driven design of compact microwave hybrid couplers
PublikacjaThis work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bot-tom–up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublikacjaDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Slow-wave resonant structures in branch-line coupler miniaturization: a case study
PublikacjaA case study of novel slow-wave resonant structures dedicated to efficient microstrip branch-line coupler size reduction has been presented. A compact 3-dB branch-line coupler has been designed to mimic the performance of its conventional counterpart, simultaneously demonstrating a substantial 88% surface area reduction. The vital usefulness of the approach in the process of microstrip line abbreviation has been experimentally...
-
Correction of far-field measurements obtained in non-anechoic test site
Dane BadawczeThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for two geometrically small antenna structures: a spline-parameterized Vivaldi structure and a compact spline-based monopole. The responses have been obtained at the selected frequencies of interest as a function of mentioned structures...
-
Radiation pattern measurements of geometrically small antennas performed in non-anechoic environments
Dane BadawczeThe dataset contains unprocessed measurements of radiation pattern characteristics performed in non-anechoic regime for three geometrically small antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, and a quasi-Yagi geometry with enhanced bandwidth. The responses have been obtained over broad frequency ranges...
-
Measurements of electrically small antenna radiation patterns in non-anechoic environments using TGM
Dane BadawczeThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for four antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, super-ultrawideband antenna, and a quasi-Yagi component. The responses have been obtained at the selected frequencies of interest...
-
Cost-efficient simulation-driven design of compact impedance matching transformers
PublikacjaIn this paper, an algorithmic framework for cost-efficient design optimization of miniaturized impedance matching transformers has been presented. Our approach exploits a bottom-up design that involves translating the overall design specifications for the circuit at hand to its elementary building blocks (here, compact microstrip resonant cells, CMRCs), as well as fast surrogate-assisted optimization of the cells followed by simulation-based...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublikacjaIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Efficient model order reduction for FEM analysis of waveguide structures and resonators
PublikacjaAn efficient model order reduction method for three-dimensional Finite Element Method (FEM) analysis of waveguide structures is proposed. The method is based on the Efficient Modal Order Reduction (ENOR) algorithm for creating macro-elements in cascaded subdomains. The resulting macro-elements are represented by very compact submatrices, leading to significant reduction of the overall number of unknowns. The efficiency of the model...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublikacjaA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Rapid optimization of compact microwave passives using kriging surrogates and iterative correction
PublikacjaDesign of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects,...
-
Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching
PublikacjaFinding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective...
-
A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications
PublikacjaIn this work, a compact monopole antenna for broadband/multi-band and beyond ultra- wideband (UWB) communication has been proposed. The structure is based on a spline-enhanced radiator with a broadband feed and a modified ground plane. Rigorous design optimization of the radiator has been performed in a two-stage framework where optimization of the structure with respect to electrical performance is followed by explicit miniaturization...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublikacjaIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
A Novel Versatile Decoupling Structure and Expedited Inverse-Model-Based Re-Design Procedure for Compact Single-and Dual-Band MIMO Antennas
PublikacjaMultiple-input multiple-output (MIMO) antennas are considered to be the key components of fifth generation (5G) mobile communications. One of the challenges pertinent to the design of highly integrated MIMO structures is to minimize the mutual coupling among the antenna elements. The latter arises from two sources, the coupling in the free space and the coupling currents propagating on a ground plane. In this paper, an array of...
-
Topological modifications for performance improvement and size reduction of wideband antenna structures
PublikacjaCompact antennas belong to the key components of modern communication systems. Their miniaturization is often achieved by introducing appropriate topological changes such as simple ground plane slots or tapered feeds. More sophisticated modifications are rarely considered in the literature because they normally lead to significant increase of the number of tunable parameters, which makes the antenna design process more challenging....
-
Strategies for computationally feasible multi-objective simulation-driven design of compact RF/microwave components
PublikacjaMulti-objective optimization is indispensable when possible trade-offs between various (and usually conflicting) design objectives are to be found. Identification of such design alternatives becomes very challenging when performance evaluation of the structure/system at hand is computationally expensive. Compact RF and microwave components are representative examples of such a situation: due to highly compressed layouts and considerable...
-
Model Correction and Optimization Framework for Expedited EM-Driven Surrogate-Assisted Design of Compact Antennas
PublikacjaDesign of compact antennas is a numerically challenging process that heavily relies on electromagnetic (EM) simulations and numerical optimization algorithms. For reliability of simulation results, EM models of small radiators often include connectors which—despite being components with fixed dimensions—significantly contribute to evaluation cost. In this letter, a response correction method for antenna models without connector,...
-
Multitaper-Based Post-processing of Compact Antenna Responses Obtained in Non-anechoic Conditions
PublikacjaThe process of developing antenna structures typically involves prototype measurements. While accurate validation of far-field performance can be performed in dedicated facilities like anechoic chambers, high cost of construction and maintenance might not justify their use for teaching, or low-budget research scenarios. Non-anechoic experiments provide a cost-effective alternative, however the performance metrics obtained in such...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublikacjaDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublikacjaUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports
PublikacjaA novel structure for a four-port microstrip magic-T junction is presented. The device is composed of microstrip and slotline circuits etched onto two sides of a dielectric substrate. The device is extremely compact and occupies an area more than three times smaller than similar structures recently reported in the literature. The novelty of the device lies in the use of microstrip/slotline transitions for both input ports: summation...
-
Novel doubly perforated broadband microstrip branch-line couplers
PublikacjaTwo broadband compact doubly perforated hybrid couplers have been designed, manufactured, and measured. To improve frequency characteristics and to reduce circuit dimensions, two kinds of perforations have been introduced: the defected ground structures in the ground plane metallization and photonic bandgap cells in the strip metallization. Measurement results show essential miniaturization (~39% and ~36%) and enhancement of the...
-
Fast Antenna Optimization Using Gradient Monitoring and Variable-Fidelity EM Models
PublikacjaAccelerated simulation-driven design optimization of antenna structures is proposed. Variable-fidelity electromagnetic (EM) analysis is used as well as the trust-region framework with limited sensitivity updates. The latter are controlled by monitoring the changes of the antenna response gradients. Our methodology is verified using three compact wideband antennas. Comprehensive benchmarking demonstrates its superiority over both...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Expedited Multi-Objective Design Optimization of Miniaturized Microwave Structures Using Physics-Based Surrogates
PublikacjaIn this paper, a methodology for fast multi-objective design optimization of compact microwave circuits is presented. Our approach exploits an equivalent circuit model of the structure under consideration, corrected through implicit and frequency space mapping, then optimized by a multi-objective evolutionary algorithm. The correction/optimization of the surrogate is iterated by design space confinement and segmentation based on...
-
A Compact Basis for Reliable Fast Frequency Sweep via the Reduced-Basis Method
PublikacjaA reliable reduced-order model (ROM) for fast frequency sweep in time-harmonic Maxwell’s equations by means of the reduced-basis method is detailed. Taking frequency as a parameter, the electromagnetic field in microwave circuits does not arbitrarily vary as frequency changes, but evolves on a very low-dimensional manifold. Approximating this low-dimensional manifold by a low dimension subspace, namely, reduced-basis space, gives...
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublikacjaPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Inverse surrogate models for fast geometry scaling of miniaturized dual-band couplers
PublikacjaRe-design of microwave structures for various sets of performance specifications is a challenging task, particularly for compact components where considerable electromagnetic (EM) cross-couplings make the relationships between geometry parameters and the structure responses complex. Here, we address geometry scaling of miniaturized dual-band couplers by means of inverse surrogate modeling. Our approach allows for fast estimation...
-
A Compact Circularly Polarized Dielectric Resonator Antenna with MIMO Characterizations for UWB Applications
PublikacjaUltra-wideband (UWB) technology is extensively used in indoor navigation, medical applications, and Internet of Things (IoT) devices due to its low power consumption and resilience against multipath fading and losses. This paper examines a multiple input multiple-output (MIMO), circularly polarized (CP) dielectric resonator antenna (DRA) for UWB systems. Compact form factor, high gain, wideband response, improved port isolation,...
-
Wideband Model Order Reduction for Macromodels in Finite Element Method
PublikacjaAbstract: This paper presents a novel algorithm for accelerating 3D Finite Element Method simulations by introducing macromodels created in local model order reduction in the selected subdomains of the computational domain. It generates the projection basis for a compact system of equations associated with a separate subdomain. Due to non-linear frequency dependency in the Right Hand Side (RHS), the standard reduction methods do...