Filtry
wszystkich: 50
Wyniki wyszukiwania dla: MICROSTRIP CIRCUITS
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublikacjaContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
On Alternative Approaches to Design of Corporate Feeds for Low-Sidelobe Microstrip Linear Arrays
PublikacjaTwo design approaches, illustrated by simulations and measurements, aiming at a systematic computer-aided design of printed circuit feeds for low-sidelobe microstrip antenna arrays are described. The novelty of these approaches resides in identification of the optimal feed architectures with subsequent simulation-based optimization of the feed and array aperture dimensions. In this work, we consider microstrip corporate feeds realizing...
-
Slow-wave fractal-shaped compact microstrip resonant cell
PublikacjaA novel fractal-shaped compact microstrip resonant cell (CMRC) featuring a strong slow-wave effect has been presented. Its vital usefulness in the process of microstrip line miniaturisation has been proved and experimentally validated on the basis of a compact 3-dB branch-line coupler illustrating the possibilities of the approach. A prototype example structure has been designed to mirror the characteristics of a conventional device,...
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublikacjaAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublikacjaA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
A new approach to a fast and accurate design of microwave circuits with complex topologies
PublikacjaA robust simulation-driven design methodology of microwave circuits with complex topologies has been presented. The general method elaborated is suitable for a wide class of N-port unconventional microwave circuits constructed as a deviation from classic design solutions. The key idea of the approach proposed lies in an iterative redesign of a conventional circuit by a sequential modification and optimisation of its atomic building...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublikacjaA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Estimation of a single balun parameters on the base of back-to-back measurements
PublikacjaA method of estimation of a single balun S parameters based on the measured parameters of back-to-back configuration is presented in the paper. Proposed approach is to measure two back-to-back circuits: i) direct connection of baluns and ii) connection with additional transmission line segment between the baluns. Coupling effects in both circuits are calculated from full-wave simulations. Next they are applied to estimate the parameters...
-
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers
PublikacjaFull-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical...
-
Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction
PublikacjaA comprehensive comparison of a wide collection of compact microstrip resonant cells (CMRCs) found in the extensive body of literature has been presented. The evaluation of different CMRC designs has led to the selection of the most promising CMRC geometry for the efficient miniaturisation of modern microwave components. In order to showcase the vital effectiveness of the approach, the initially selected CMRC has been notably...
-
An Efficient PEEC-Based Method for Full-Wave Analysis of Microstrip Structures
PublikacjaThis article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublikacjaA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports
PublikacjaA novel structure for a four-port microstrip magic-T junction is presented. The device is composed of microstrip and slotline circuits etched onto two sides of a dielectric substrate. The device is extremely compact and occupies an area more than three times smaller than similar structures recently reported in the literature. The novelty of the device lies in the use of microstrip/slotline transitions for both input ports: summation...
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublikacjaIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Improved Efficacy Behavioral Modeling of Microwave Circuits through Dimensionality Reduction and Fast Global Sensitivity Analysis
PublikacjaBehavioral models have garnered significant interest in the realm of high-frequency electronics. Their primary function is to substitute costly computational tools, notably electromagnetic (EM) analysis, for repetitive evaluations of the structure under consideration. These evaluations are often necessary for tasks like parameter tuning, statistical analysis, or multi-criterial design. However, constructing reliable surrogate models...
-
Multi-objective optimization of microwave couplers using corrected domain patching
PublikacjaPractical design of microwave components and circuits is a compromise between various, often conflicting objectives. In case of compact structures, the trade-offs are typically concerned with the circuit size and its electrical performance. Comprehensive information about the best possible trade-offs can be obtained by means of multi-objective optimization. In this paper, we propose a computationally efficient technique for identifying...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Rapid Simulation-Driven Multiobjective Design Optimization of Decomposable Compact Microwave Passives
PublikacjaIn this paper, a methodology for fast multiobjective optimization of the miniaturized microwave passives has been presented. Our approach is applicable to circuits that can be decomposed into individual cells [e.g., compact microstrip resonant cells (CMRCs)]. The structures are individually modeled using their corresponding equivalent circuits and aligned with their accurate, EM simulated...
-
Rapid simulation-driven design of miniaturised dual-band microwave couplers by means of adaptive response scaling
PublikacjaOne of the major challenges in the design of compact microwave structures is the necessity of simultaneous handling of several objectives and the fact that expensive electromagnetic (EM) analysis is required for their reliable evaluation. Design of multi-band circuits where performance requirements are to be satisfied for several frequencies at the same time is even more difficult. In this work, a computationally efficient design...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublikacjaThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublikacjaIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublikacjaSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublikacjaManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublikacjaDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublikacjaThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublikacjaThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublikacjaFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching
PublikacjaFinding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective...
-
Knowledge-Based Expedited Parameter Tuning of Microwave Passives by Means of Design Requirement Management and Variable-Resolution EM Simulations
PublikacjaThe importance of numerical optimization techniques has been continually growing in the design of microwave components over the recent years. Although reasonable initial designs can be obtained using circuit theory tools, precise parameter tuning is still necessary to account for effects such as electromagnetic (EM) cross coupling or radiation losses. EM-driven design closure is most often realized using gradient-based procedures,...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublikacjaOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Frequency-Variant Double-Zero Single-Pole Reactive Coupling Networks for Coupled-Resonator Microwave Bandpass Filters
PublikacjaIn this work, a family of frequency-variant reactive coupling (FVRC) networks is introduced and discussed as new building blocks for the synthesis of coupled-resonator bandpass filters with real or complex transmission zeros (TZs). The FVRC is a type of nonideal frequency-dependent inverter that has nonzero elements on the diagonal of the impedance matrix, along with a nonlinear frequency-variation profile of its transimpedance...
-
On Decision-Making Strategies for Improved-Reliability Size Reduction of Microwave Passives: Intermittent Correction of Equality Constraints and Adaptive Handling of Inequality Constraints
PublikacjaDesign optimization of passive microwave components is an intricate process, especially if the primary objective is a reduction of the physical size of the structure. The latter has become an important design consideration for a growing number of modern applications (mobile communications, wearable/implantable devices, internet of things), where miniaturization is imperative due to a limited space allocated for the electronic circuitry....
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublikacjaThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Design centering of compact microwave components using response features and trust regions
PublikacjaFabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material parameters or operating conditions, are detrimental to the performance of microwave circuits. Mitigating their impact requires accounting for possible parameter deviations already at the design stage. This involves optimization of appropriately defined statistical figures of merit such as yield. Alt-hough important, robust (or tolerance-aware)...
-
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublikacjaThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Improved Design Closure of Compact Microwave Circuits by Means of Performance Requirement Adaptation
PublikacjaNumerical optimization procedures have been widely used in the design of microwave components and systems. Most often, optimization algorithms are applied at the later stages of the design process to tune the geometry and/or material parameter values. To ensure sufficient accuracy, parameter adjustment is realized at the level of full-wave electromagnetic (EM) analysis, which creates perhaps the most important bottleneck due to...
-
RF Input-Quasi-Reflectionless Dispersive-Delay Structures Based on Complementary-Diplexer Circuits
PublikacjaA class of RF dispersive-delay structures (DDSs) with input-quasi-reflectionless behavior is reported. It is based on the exploitation of complementary-diplexer circuit networks, in which the out-of-band RF-input-power echoes reflected by the main bandpass-filter-(BPF)-type channel are dissipated by the resistively-terminated auxiliary bandstop-filter-(BSF)-type channel. Specifically, it is shown that the influence of the absorptive...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublikacjaModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublikacjaParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublikacjaPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublikacjaSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublikacjaDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
PublikacjaAntennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside...
-
Inline Microwave Filters With N+1 Transmission Zeros Generated by Frequency-Variant Couplings: Coupling-Matrix-Based Synthesis and Design
PublikacjaA general coupling-matrix-based synthesis methodology for inline Nth-order microwave bandpass filters (BPFs) with frequency-variant reactive-type couplings that generate N+1 transmission zeros (TZs) is presented in this brief. The proposed approach exploits the formulation of the synthesis problem as three inverse nonlinear eigenvalue problems (INEVPs) so that the coupling matrix is built from their sets of eigenvalues. For this...
-
Miniaturized Dual-Band Bandpass Filter with Wide Inter Stopband for 5G Applications
PublikacjaThis article presents the design of a miniaturized dual-band bandpass filter with a wide inter-stopband and improved isolation. A novel topology comprising the series connection of shunt cascaded coupled lines and quarter-wavelength open stubs is proposed to realize the dual-band filter along with half-wavelength stepped-impedance stubs. The circuit characteristics contain nine transmission zeros and four poles. The transmission...
-
Microfluidic SIW-Based Tunable Self-Diplexing Antenna for Sub-6 GHz Band Applications
PublikacjaThis work introduces a novel frequency tunable self-diplexing antenna (SDA) design based on substrate integrated waveguide (SIW) technology. A modified A-shaped slot is employed on the cavity’s top plane, which is excited by two independent 50 Ω microstrip feed lines to operate at each resonant frequency. The frequency flexibility of the proposed antenna allows for fine-tuning at each resonance frequency. The frequency flexibility...
-
Shielded HMSIW-Based Self-Triplexing Antenna With High Isolation for WiFi/WLAN/ISM Band
PublikacjaThis article presents a novel design of a miniaturized self-triplexing antenna (STA) based on the shielded half-mode substrate integrated waveguide (S-HMSIW) for WiFi/WLAN/ISM-band applications. The S-HMSIW is constructed by assembling one row of vias and an open slot at the open-ended side of the conventional HMSIW. This configuration increases the quality factor and minimizes unwanted radiation loss, which allows for achieving...
-
RF Multi-Functional Input-Reflectionless Dispersive-Delay Structure With Sharp-Rejection Filtering Using Channelization Techniques
PublikacjaA class of RF multi-functional input-reflectionless dispersive-delay structure (DDS) with linear-type in-band groupdelay variation and sharp-rejection bandpass-filtering capability is reported. It exploits a two-branch-channelized/balanced-type circuit with similar low-order reflective DDS units inside its channels, which are connected through input/output 3-dB quadrature wideband couplers. The adopted DDS unit is based on a coupledresonator...
-
A Compact Self-Hexaplexing Antenna Implemented on Substrate-Integrated Rectangular Cavity for Hexa-Band Applications
PublikacjaThis brief introduces a novel architecture of a compact self-hexaplexing antenna (SHA) implemented on a substrate-integrated rectangular cavity (SIRC) for hexa-band applications. The proposed SHA is configured by using an SIRC resonator, two Pi-shaped slots (PSSs), and six 50Ω microstrip feedlines. The PSSs are connected back-to-back and loaded on top of the SIRC resonator to produce six patch radiators (PRs). The PRs are excited...