Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy - Publication - Bridge of Knowledge

Search

Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy

Abstract

Agriculture is the major contributor of waterborne nutrient fluxes into the Baltic Sea, one of the world’s most eutrophication-sensitive areas. Poland, as a large, densely populated state ohf the Baltic Region, with dominating agricultural land use, largely contributes to riverborne loads of N and P. The aim of our study was to examine the input of nutrients from three small first-order agricultural watersheds (Bladzikowski Stream, Gizdepka river and Mrzezino canal) in the Pomerania region, into the Bay of Puck, inner part of the Gulf of Gdansk. This study attempts to give a partial answer as to the question if inputs of nutrients from the 3 analysed watersheds comply with the targets of the Baltic Sea Action Plan (BSAP) and Country Allocated Reduction Targets (CART). The impact of agricultural practices was assessed on the basis of farm questionnaires and calculations of nutrient balances for the examined farms. The nutrient concentrations in the soil and drainage ditches were examined, followed by an assessment of nutrient concentrations in the watercourses at the sampling points located close to the estuaries. The average mineral N fertiliser consumption (109 kg N/ha) in the analysed watersheds was higher than Poland’s average. The average N and P surpluses for surveyed farms (96.4 kg/ha and 4.4 kg/ha, respectively) were higher than the EU mean in case of N and markedly lower in case of P. We used Principal Component Analysis which confirmed that there were correlations between nutrient surpluses and nutrient concentrations in streams and/or drainage ditches. The N-NO3 and Pmin concentrations were also correlated to precipitation. The average N concentrations in the analysed watercourses were equal to 1.53 mg/L for Gizdepka, 1.88 mg/L for Mrzezino canal and 3.52 mg/L for Bładzikowski Stream. The mean P concentrations observed in the investigated watercourses were markedly higher than 0.1 mg/L. With regard to BSAP objectives, as well as CART set for Poland, the average nutrient concentrations in rivers should be approximately at the level of 2.5 mg N/L and 0.07 mg P/L.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 2 1

    Scopus

Cite as

Full text

download paper
downloaded 55 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF ENVIRONMENTAL MANAGEMENT no. 252,
ISSN: 0301-4797
Language:
English
Publication year:
2019
Bibliographic description:
Wojciechowska E., Pietrzak S., Matej-Łukowicz K., Nawrot N., Zima P., Kalinowska D., Wielgat P., Obarska-Pempkowiak H., Gajewska M., Dembska G., Jasiński P., Pazikowska-Sapota G., Galer-Tatarowicz K., Dzierzbicka-Głowacka L.: Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy// JOURNAL OF ENVIRONMENTAL MANAGEMENT -Vol. 252, (2019), s.109637-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jenvman.2019.109637
Bibliography: test
  1. Álvarez, X., Valero, E., Santos, R.M.B., Varandas, S.G.P., Sanches Fernandes, L.F., Pacheco, F.A.L., 2017. Anthropogenic nutrients and eutrophication in multiple land use water- sheds: best management practices and policies for the protection of water resources. Land Use Policy 69, 1-11. https://doi.org/10.1016/j.landusepol.2017.08.028. open in new tab
  2. Ballantine, D.J., Tanner, C.C., 2010. Substrate and filter materials to enhance phospho- rus removal in constructed wetlands treating diffuse farm runoff: a review. J. New Zealand J. Agricult. Res. 53 (1), 71-95. open in new tab
  3. Castaldelli, G., Soana, E., Racchetti, E., Vincenzi, F., Fano, E.A., Bartoli, M., 2015. Vege- tated canals mitigate nitrogen surplus in agricultural watersheds. Agric. Ecosyst. Env- iron. 212, 253-262. https://doi.org/10.1016/j.agee.2015.07.009. open in new tab
  4. Chief Inspectorate for Environmental Protection, 2018. Report on the State of the Environ- ment. (Warsaw). open in new tab
  5. In: Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Council of Ministers, 2018. Rozporządzenie Rady Ministrów Z Dnia 5 Czerwca 2018 R. W Sprawie Przyjęcia "Programu Działań Mających Na Celu Zmniejszenie Zanieczyszczenia Wód Azotanami Pochodzącymi Ze Źródeł Rolniczych Oraz Zapobie- ganie Dalszemu Zanieczyszczeniu. open in new tab
  6. Dzierzbicka-Glowacka, L., Pietrzak, S., Dybowski, D., Białoskórski, M., Marcinkowski, T., Rossa, L., Urbaniak, M., Majewska, Z., Juszkowska, D., Nawalany, P., Pazikowska-Sapota, G., Kamińska, B., Selke, B., Korthals, P., Puszkarczuk, T., 2019. Impact of agricultural farms on the environment of the Puck Commune: integrated agriculture calculator-CalcGosPuck. PeerJ 7, e6478. https://doi.org/10.7717/peerj. 6478. open in new tab
  7. Dąbrowska, J., 2008. In: Evaluation of the Content of Nitrogen and Phosphorus Com- pounds in the Waters of Trzemna River. Infrastructure and Ecology of Rural Areas, 7/ 2008. Polish Academic of Science, pp. 57-68.
  8. Dąbrowska, J., Bawiec, A., Pawęska, K., Kamińska, J., Stodolak, R., 2017. Assessing the impact of wastewater effluent diversion on water quality. Pol. J. Environ. Stud. 26, 9-16. https://doi.org/10.15244/pjoes/64748. open in new tab
  9. Elofsson, K., 2001. Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. Ecol. Econ. 47, 13-31. open in new tab
  10. European Environment Agency, 2018. Agricultural Land: Nitrogen Balance (No. 19/2018). (Copenhagen). open in new tab
  11. European Environment AgencyEuropean Environment Agency [WWW Document]. open in new tab
  12. Fleming-Lehtinen, V., Andersen, J.H., Carstensen, J., Łysiak-Pastuszak, E., Murray, C., Pyhälä, M., Laamanen, M., 2015. Recent developments in assessment methodology reveal that the Baltic Sea eutrophication problem is expanding. Ecol. Indicat. 48, 380-388. https://doi.org/10.1016/j.ecolind.2014.08.022. open in new tab
  13. Gren, I.M., Jannke, P., Elofsson, K., 1997. Cost-effective nutrient reductions to the Baltic Sea. Environ. Resour. Econ. 10 (4), 341-362. open in new tab
  14. Heisler, J., Glibert, P.M., Burkholder, J.M., Anderson, D.M., Cochlan, W., Dennison, W.C., Dortch, Q., Gobler, C.J., Heil, C.A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H.G., Sellner, K., Stockwell, D.A., Stoecker, D.K., Suddleson, M., 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8, 3-13. https://doi. org/10.1016/j.hal.2008.08.006. open in new tab
  15. HELCOMHelcom Baltic Sea action plan[WWW Document], (accessed 4.1.19)http:// www.helcom.fi/baltic-sea-action-plan/action-plan2007 open in new tab
  16. HELCOM, 2009. Eutrophication in the Baltic Sea an Integrated Thematic Assessment of the Effects of Nutrient Enrichment in the Baltic Sea Region. open in new tab
  17. HELCOM, 2013. Taking Further Action to Implement the Baltic Sea Action Plan -Reaching Good Environmental Status for a Healthy Baltic Sea. HELCOMCountry allocated reduction targets (CARTS)[WWW Document]http://www. helcom.fi/baltic-sea-action-plan/nutrient-reduction-scheme/targets2013 open in new tab
  18. HELCOM, 2017. First Version of the 'State of the Baltic Sea' Report-June 2017-to Be Updated in 2018. HELCOM. open in new tab
  19. HELCOM, 2018. Sources and pathways of nutrients to the Baltic Sea. In: Baltic Sea Envi- ronment Proceedings No. 153. pp. 1-48. ISSN 0357-2994. open in new tab
  20. Helin, J., Laukkanen, M., Koikkalainen, K., 2006. Abatement costs for agricultural nitrogen and phosphorus loads: a case study of crop farming in South-Western Finland. Agric. Food Sci. 15, 351-374. open in new tab
  21. Howarth, R.W., 2008. Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8, 14-20. https://doi.org/10.1016/j.hal.2008.08.015. open in new tab
  22. Humborg, C., Pastuszak, M., Aigars, J., Siegmund, H., Mörth, C.-M., Ittekkot, V., 2006. De- creased silica land-sea fluxes through damming in the Baltic Sea catchment -signifi- cance of particle trapping and hydrological alterations. Biogeochemistry 77, 265-281. https://doi.org/10.1007/s10533-005-1533-3. open in new tab
  23. Jarvie, H.P., Neal, C., Withers, P.J.A., 2006. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 360, 246-253. https://doi.org/10.1016/j.scitotenv.2005.08.038. open in new tab
  24. Kalinowska, D., Wielgat, P., Kolerski, T., Zima, P., 2018. Effect of GIS parameters on mod- elling runoff from river basin. The case study of catchment in the Puck District. In: E3S Web Conf., 63. 00005. https://doi.org/10.1051/e3sconf/20186300005. open in new tab
  25. Kiedrzyńska, E., Kiedrzyński, M., Urbaniak, M., Magnuszewski, A., Sklodowski, M., Wyr- wicka, A., Zalewski, M., 2014. Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecol. Eng. 70, 337-348. open in new tab
  26. Kleinman, P.J.A., Smith, D.R., Bolster, C.H., Easton, Z.M., 2015. Phosphorus fate, manage- ment, and modeling in artificially drained systems. J. Environ. Qual. 44, 460. https:// doi.org/10.2134/jeq2015.02.0090. open in new tab
  27. Kowalkowski, T., Buszewski, B., 2006. Emission of nitrogen and phosphorus in polish rivers: past, present, and future trends in the Vistula river catchment. Environ. Eng. Sci. 23, 615-622. open in new tab
  28. E. Wojciechowska et al. Journal of Environmental Management xxx (xxxx) xxx-xxx
  29. Kowalkowski, T., Pastuszak, M., Igras, J., Buszewski, B., 2012. Differences in emission of nitrogen and phosphorus into the Vistula and Oder basins in 1995-2008 -natural and anthropogenic causes (MONERIS model). J. Mar. Syst. 89, 48-60. https://doi.org/10. 1016/j.jmarsys.2011.07.011. open in new tab
  30. Kyllmar, K., Forsberg, L.S., Andersson, S., Mårtensson, K., 2014. Small agricultural moni- toring catchments in Sweden representing environmental impact. Agric. Ecosyst. Env- iron. 198, 25-35. https://doi.org/10.1016/j.agee.2014.05.016. open in new tab
  31. Larsson, M., Granstedt, A., 2010. Sustainable governance of the agriculture and the Baltic Sea -agricultural reforms, food production and curbed eutrophication. Ecol. Econ. 69, 1943-1951. https://doi.org/10.1016/j.ecolecon.2010.05.003. open in new tab
  32. Marshall, E., Aillery, M., Ribaudo, M., Key, N., Sneeringer, S., Hansen, L., Malcolm, S., Rid- dle, A., 2018. Reducing Nutrient Losses from Cropland in the Mississippi/Atchafalaya River Basin: Cost Efficiency and Regional Distribution, ERR-258. U.S. Department of Agriculture, Economic Research Service, p. 75. open in new tab
  33. Matej-Łukowicz, K., Wojciechowska, E., 2017. Contamination of water in oliwski stream after the flood in 2016. E3S Web Conf. 17, 00057. https://doi.org/10.1051/e3sconf/ 20171700057. Ministry of the Environment, 2016. Regulation of the Ministry of the Environment of 19 July 2016 on the Forms and Methods of Monitoring of Uniform Bodies of Surface and Groundwater. open in new tab
  34. Nausch, G., Nehring, D., Aertebjerg, G., 1999. Anthropogenic nutrient load of the Baltic Sea. Limnologica 29, 233-241. https://doi.org/10.1016/S0075-9511(99)80007-3. open in new tab
  35. Ning, W., Nielsen, A.B., Ivarsson, L.N., Jilbert, T., Åkesson, C.M., Slomp, C.P., Andrén, E., Broström, A., Filipsson, H.L., 2018. Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene 21, 66-79. https: //doi.org/10.1016/j.ancene.2018.02.003. open in new tab
  36. Nixon, S.W., 2009. Eutrophication and the macroscope. Hydrobiologia 629, 5-19. https:// doi.org/10.1007/s10750-009-9759-z. open in new tab
  37. Oenema, O., van Liere, L., Schoumans, O., 2005. Effects of lowering nitrogen and phos- phorus surpluses in agriculture on the quality of groundwater and surface water in The Netherlands. J. Hydrol 304, 289-301. https://doi.org/10.1016/j.jhydrol.2004.07. 044. open in new tab
  38. Pastuszak, M., Kowalkowski, T., Kopiński, J., Stalenga, J., Panasiuk, D., 2014. Impact of forecasted changes in Polish economy (2015 and 2020) on nutrient emission into the river basins. Sci. Total Environ. 493, 32-43. https://doi.org/10.1016/j.scitotenv. 2014.05.124. open in new tab
  39. Pastuszak, M., Kowalkowski, T., Kopiński, J., Doroszewski, A., Jurga, B., Buszewski, B., 2018. Long-term changes in nitrogen and phosphorus emission into the Vistula and Oder catchments (Poland)-modeling (MONERIS) studies. Environ. Sci. Pollut. Res. 25, 29734-29751. https://doi.org/10.1007/s11356-018-2945-7. open in new tab
  40. Pietrzak, S., 2012. Nitrogen and phosphorus losses from farms. In: Pastuszak, M., Igras, J. (Eds.), Temporal and Spatial Differences in Emission of Nitrogen and Phosphorus from Polish Territory to the Baltic Sea. Gdynia-Puławy, pp. 195-224. open in new tab
  41. Polish Committee for Standardization, 1996. Chemical and Agricultural Analysis of Soil - Determination of Available Phosphorus Content in Mineral Soils. open in new tab
  42. Polish Committee for Standardization, 1997. Soil Chemical and Agricultural Analysis - Sampling. open in new tab
  43. Polish Committee for Standardization, 1997. Chemical Analysis of Soil -Determination of Available Phosphorus, Potassium, Magnesium and Manganese Content in Organic Soils. open in new tab
  44. Polish Committee for Standardization, 1997. Chemical Analysis of Soil -Method of Sam- pling and Determination of Nitrate and Ammonium in Mineral Soils. open in new tab
  45. Reid, K., Schneider, K., McConkey, B., 2018. Components of phosphorus loss from agricul- tural landscapes, and how to incorporate them into risk assessment tools. Front. Earth Sci. 6. https://doi.org/10.3389/feart.2018.00135. open in new tab
  46. Saaltink, R., van der Velde, Y., Dekker, S.C., Lyon, S.W., Dahlke, H.E., 2014. Societal, land cover and climatic controls on river nutrient flows into the Baltic Sea. J. Hydrol. Reg. Stud. 1, 44-56. https://doi.org/10.1016/j.ejrh.2014.06.001. open in new tab
  47. Savchuk, O.P., 2018. Large-scale nutrient dynamics in the Baltic Sea, 1970-2016. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00095. open in new tab
  48. Shi, P., Zhang, Y., Li, Z., Li, P., Xu, G., 2017. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 151, 182-190. https://doi. org/10.1016/j.catena.2016.12.017. open in new tab
  49. Stålnacke, P., Grimvall, A., Sundblad, K., Wilander, A., 1999. Trends in nitrogen transport in Swedish rivers. Environ. Monit. Assess. 59, 47-72. open in new tab
  50. Suligowski, Z., Nawrot, N., 2018. The consequences of applying a new Polish Water Law Act for protection against urban flooding. E3S Web Conf. 45, 00093. https://doi.org/ 10.1051/e3sconf/20184500093. open in new tab
  51. Svendsen, L.M., Bartnicki, J., Boutrup, S., Gustafsson, B., Jarosiński, W., Knuuttila, S., Koti- lainen, P., Larsen, S.E., Pyhälä, M., Ruoho-Airola, T., Sonesten, L., Staaf, H., 2015. Up- dated Fifth Baltic Sea Pollution Load Compilation. HELCOM, Helsinki. (PLC-5.5) (No. 145).
  52. In: The Water Law Act Dated 20 July 2017. open in new tab
  53. Trząski, L., Homerla, A., Katarzyna, K., 2010. Zanieczyszczenia fosforem: bariera dla poprawy stanu ekologicznego rzek na Górnym Śląsku. Pr. Nauk. GIG Gór. Śr. 61-74.
  54. Ulén, B., Pietrzak, S., Sundblad-Tonderski, K., 2013. Preparation of nutrients balance with the method at the gate of the farm. In: Farms' Self-Evaluation in the Fields of: Nutri- ents' Management and the Environmental Conditions' Analysis. Institute of Technol- ogy and Life Sciences in Falenty, Falenty. open in new tab
  55. Vibart, R., Vogeler, I., Dennis, S., Kaye-Blake, W., Monaghan, R., Burggraaf, V., Beautrais, J., Mackay, A., 2015. A regional assessment of the cost and effectiveness of mitiga- tion measures for reducing nutrient losses to water and greenhouse gas emissions to air from pastoral farms. J. Environ. Manag. 156, 276-289. https://doi.org/10.1016/j. jenvman.2015.03.041. open in new tab
  56. Voss, M., Dippner, J.W., Humborg, C., Hürdler, J., Korth, F., Neumann, T., Schernewski, G., Venohr, M., 2011. History and scenarios of future development of Baltic Sea eutrophication. Estuar. Coast Shelf Sci. 92, 307-322. https://doi.org/10.1016/j.ecss. 2010.12.037. open in new tab
  57. Vymazal, J., Dvořáková Březinová, T., 2018. Treatment of a small stream impacted by agricultural drainage in a semi-constructed wetland. Sci. Total Environ. 643, 52-62. https://doi.org/10.1016/j.scitotenv.2018.06.148. open in new tab
  58. Wojciechowska, E., Nawrot, N., Matej-Łukowicz, K., Gajewska, M., Obarska-Pempkowiak, H., 2018. Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Sci. Technol. Water Supply https://doi.org/10.2166/ws.2018. 190. open in new tab
  59. Wu, J., Stewart, T.W., Thompson, J.R., Kolka, R.K., Franz, K.J., 2015. Watershed fea- tures and stream water quality: gaining insight through path analysis in a Midwest urban landscape. U.S.A. Landsc. Urban Plan. 143, 219-229. https://doi.org/10.1016/ j.landurbplan.2015.08.001. open in new tab
  60. Wulff, F., Humborg, C., Andersen, H.E., Blicher-Mathiesen, G., Czajkowski, M., et al., 2014. Reduction of Baltic Sea nutrient inputs andallocation of abatement costs within the BalticSea catchment. Ambio 43, 11-25. open in new tab
  61. Wustenberghs, H., Broekx, S., Van Hoof, K., Claeys, D., D'Heygere, T., D'Hooghe, J., Dessers, R., Huysmans, T., Lauwers, L., Meynaerts, E., Vercaemst, P., 2008. Cost-ben- efit analysis of abatement measures for nutrient emission from agriculture. In: Euro- pean Association of Agricultural Economists (EAAE). 2008 International Congress, Au- gust 26-29, 2008. (Ghent, Belgium).
  62. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., Misopolinos, N., 2002. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 88, 137-146. https://doi. org/10.1016/S0167-8809(01)00249-3. open in new tab
  63. Zima, P., 2019. Simulation of the impact of pollution discharged by surface waters from agricultural areas on the water quality of Puck Bay, Baltic Sea. Euro-Mediterr. J. Env- iron. Integr. 4. https://doi.org/10.1007/s41207-019-0104-2. open in new tab
  64. Ławniczak, A., Zbierska, J., Kupiec, J., 2008. Changes of Nutrient Concentrations in Wa- ter Sensitive to Nitrate Pollution from Agricultural Sources in the Samica Stęszewska River Catchment. Annals of Warsaw University of Life Sciences -SGGW. Land Recla- mation 40. https://doi.org/10.2478/v10060-008-0033-2. open in new tab
Sources of funding:
  • BIOSTRATEG3/343927/3/NCBR/2017
Verified by:
Gdańsk University of Technology

seen 207 times

Recommended for you

Meta Tags