Filters
total: 1442
filtered: 167
-
Catalog
Chosen catalog filters
Search results for: TUNNELLING- INDUCED DEFORMATION
-
XLS file with the key results from the experimental analysis of the imperfect dome's state of displacements
Open Research DataThis dataset consists of an XLS file with the key results from the experimental analysis of the imperfect dome's state of displacements.
-
Key results from the numerical FEM analysis of the imperfect dome's state of displacements
Open Research DataThis dataset consists of an XLS file with the key results from the numerical FEM analysis of the imperfect dome's state of displacements.
-
The files from COMREL software used in the numerical reliability assessment of the imperfect dome's displacements
Open Research DataThis dataset consists of an archive with the files from COMREL software used in the numerical reliability assessment of the imperfect dome's state of displacements.
-
Photos and movies regarding the dome's real-life model assembly and tests
Open Research DataThis dataset consists of an archive with the photos and movies regarding the dome's real-life model assembly and tests.
-
Results of timber material tests from a strength testing machine
Open Research DataThis dataset consists of an archive with TRA files with the results of timber (wooden rolls) material tests from an universal strength testing machine.
-
Statistics of AFM current-voltage curves
Open Research DataMapping surface electrical conductivity offers enormous cognitive possibilities regarding the structure and properties of modern materials. The technique invented for this purpose (Conductive AFM) by Murrel's team and colleagues allows independent monitoring of the local conductivity of materials in correlation with the topographic profile. The mentioned...
-
The luminescence study of LiGa5(1−x)O8:5xCr3+ coumpounds
Open Research DataInfrared luminescent materials have evoked much attention from chemists and material scientists. Although substantial progress is made in materials design, the luminescent mechanism remains ambiguous in the complex structures, presenting major barriers to developing novel infrared luminescent materials. Herein, this study aims to deliberate a complete...
-
Raman spectra and electrochemical data of carbon nanowall with tailored defects
Open Research DataThis dataset comprises of Raman spectra aquired with different excitation laser sources and the electrochemical data of defect-induced carbon nanowall electrodes (CNW).
-
Imaging of ferroelectric properties of sinter by means of Piezoresponse Force Microscopy
Open Research DataFerroelectricity is a property of certain materials [1], characterized by a spontaneous electrical polarization that can be reversed by applying an external electric field. Ferroelectric properties can be used to make capacitors with adjustable capacity. The permeability of ferroelectrics is not only regulated, but usually also very high, especially...
-
Amplitude-distance spectroscopy in semi-contact mode
Open Research DataSince it was invented by Binnig et al. in 1986, atomic force microscopy (AFM) plays a key role in science and technology at the nanoscale. AFM is a microscopic technique that visualizes the surface topography using the attractive and repulsive forces of interaction between several atoms (in theory) of a blade attached to the end of the probe lever and...
-
Elastic wave propagation signals in concrete cube (experimental and calculated using discrete element method)
Open Research DataThe DataSet contains the results of the elastic wave propagation. Both experimental and numerical signals were obtained for the concrete cube with dimensions of 50 × 50 × 50 mm3. The specimen was made of concrete with called mortar concrete. The ingredients of the concrete mix were as follows: CEM I 42.5R (500 kg/m3), sand 0 – 2 (1500 kg/m3) and water...
-
The luminescence study of (C10H16N)2MnBr4 Organic–Inorganic Hybrid
Open Research DataOrganic–inorganic hybrid metal halides have recently attracted attention in the global research field for their bright light emission, tunable photoluminescence wavelength, and convenient synthesis method. This study reports the detailed properties of (C10H16N)2MnBr4, which emits bright green light with a high photoluminescence quantum yield. Results...
-
FTIR spectra and IGC chromatograms for chemically reduced graphene oxide aerogels (rGOA)
Open Research DataThe effect of selected synthesis parameters on reduced graphene oxide aerogels properties was investigated using Fourier-transform infrared spectroscopy and dynamic adsorption method (Inverse Gas Chromatography, IGC). Samples were synthesized by sol-gel method by reduction induced self-assembly of graphene oxide. As a reductant l-ascorbic acid was used....
-
Opposite pressure impact on electron-phonon coupling in Eu2+ and Ce3+ doped AlN
Open Research DataThis data analyzes the influence of pressure on electron–lattice interactions in the 5d excited states of Ce3+ and Eu2+ in the AlN host based on pressure-dependent photoluminescence and photoluminescence excitation spectra. High-pressure measurements on AlN samples doped with Eu2+ and Ce3+ ions reveal that the Stokes shift increases with pressure for...
-
The database of odd algebraic periods for quasi-unipotent self-maps of a space having the same homology group as the connected sum of g tori
Open Research DataThe dataset consists of 20 files indexed by numbers g=1,...,20. Each file provides sets of odd algebraic periods for all quasi-unipotent self-maps of a space having the same homology groups as the connected sum of g tori. Let us remark that each data set covers all algebraical restrictions that come from zeta functions for the sets of minimal Lefschetz...
-
Dataset of phase portraits of the fractional prey-predator model with Holling type-II interaction (without predator harvesting)
Open Research DataThe need for a fractional generalization of a given classical model is often due to new behaviors which cannot be taken into account by the model. In this situation, it can be useful to look for a fractional deformation of the initial system, trying to fit the fractional exponent of differentiation in order to catch properly the data.
-
The luminescence study of Ga1.98–xAlxO3:0.02Cr3+ coumpounds.
Open Research DataA chemical and mechanical pressure-induced photoluminescence tuning method was developed through structural evolution and hydrostatic pressure involving phase transition. A series of Ga1.98−xAlxO3:0.02Cr3+ phosphors were synthesized by collaborators from National Taiwan University. Structural evolution reveals a crystal phase change with the incorporation...
-
Simulations of flows in the coastal zone of the Baltic Sea
Open Research DataThe study area is located in the Southern Baltic, within Polish Marine Areas, adjacent to the coastline in the vicinity of Lubiatowo village, where The Coastal Research Station (CRS) – a field laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) –is situated. The numerical reconstruction of the coastal flow was...
-
Sea ice floe size and shape data from a very high resolution satellite image (Knox Coast, East Antarctica)
Open Research DataThis dataset contains floe size distribution data from a very high resolution (pixel size: 0.3 m) optical satellite image of sea ice, acquired on 16. Feb. 2019 off the Knox Coast (East Antarctica). The image shows relatively small ice floes produced by wave-induced breakup of landfast ice between the Mill Island and Bowman Island. The ice floes are...
-
Mode shapes of a beam and plate with defects, obtained by experimental modal analysis
Open Research DataThe DataSet contains the experimental results of the first mode shape for a beam and a plate.
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 4 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 4 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 6 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 6 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 5 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 8 and homology groups with the sum of ranks less or equal to 10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 8 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 7 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 7 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.