Filters
total: 110
filtered: 104
Search results for: GLOBAL OPTIMIZATION
-
The protein folding problem: global optimization of force fields
Publication -
Global Optimization for Recovery of Clipped Signals Corrupted With Poisson-Gaussian Noise
PublicationWe study a variational formulation for reconstructing nonlinearly distorted signals corrupted with a Poisson-Gaussian noise. In this situation, the data fidelity term consists of a sum of a weighted least squares term and a logarithmic one. Both of them are precomposed by a nonlinearity, modelling a clipping effect, which is assumed to be rational. A regularization term, being a piecewise rational approximation of the ℓ0 function...
-
Design of dimensionally stable composites using efficient global optimization method
PublicationDimensionally stable material design is an important issue for space structures such as space laser communication systems, telescopes, and satellites. Suitably designed composite materials for this purpose can meet the functional and structural requirements. In this paper, it is aimed to design the dimensionally stable laminated composites by using efficient global optimization method. For this purpose, the composite plate optimization...
-
Design of dimensionally stable composites using efficient global optimization method
Publication -
Global Optimization-Based Method for Deriving Intermolecular Potential Parameters for Crystals
Publication -
High-Efficacy Global Optimization of Antenna Structures by Means of Simplex-Based Predictors
PublicationDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublicationIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Recent improvements in prediction of protein structure by global optimization of a potential energy function
Publication -
Development of Local IDF-formula Using Controlled Random Search Method for Global Optimization
PublicationThe aim of the study is to present the effective and relatively simple empirical approach to rainfall Intensity-Duration-Frequency-formulas development, based on Controlled Random Search (CRS) for global optimization. The approach is mainly dedicated to the cases in which the commonly used IDF-relationships do not provide satisfactory fit between simulations and observations, and more complex formulas with higher number of parameters...
-
Efficient parallel algorithms in global optimization of potential energy functions for peptides, proteins, and crystals
Publication -
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublicationParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
Low-Cost Quasi-Global Optimization of Expensive Electromagnetic Simulation Models by Inverse Surrogates and Response Features
PublicationConceptual design of contemporary high-frequency structures is typically followed by a careful tuning of their parameters, predominantly the geometry ones. The process aims at improving the relevant performance figures, and may be quite expensive. The reason is that conventional design methods, e.g., based on analytical or equivalent network models, often only yield rough initial designs. This is especially the case for miniaturized...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland
PublicationWind energy (WE), which is one of the renewable energy (RE) sources for generating electricity, has been making a significant contribution to obtaining clean and green energy in recent years. Fitting an appropriate statistical distribution to the wind speed (WS) data is crucial in analyzing and estimating WE potential. Once the best suitable statistical distribution for WS data is determined, WE potential and potential yield could...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions
Publication -
Prediction of protein structure using a knowledge-based off-lattice united-residue force field and global optimization methods
Publication -
Reply to “Comment on ‘Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions'” by B. P. van Eijck and J. Kroon
Publication -
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublicationModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition
PublicationFull film hydrodynamic lubrication of marine propulsion shafting journal bearings in running condition is discussed. Considerable computational difficulties in non-linear determining the quasi-static equilibrium of the shafting are highlighted. The approach using two optimization methods (the particle swarm method and the interior point method) in combination with the specially developed relaxation technique is proposed to overcome...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Global EM-Driven Optimization of Multi-Band Antennas Using Knowledge-Based Inverse Response-Feature Surrogates
PublicationElectromagnetic simulation tools have been playing an increasing role in the design of contemporary antenna structures. The employment of electromagnetic analysis ensures reliability of evaluating antenna characteristics but also incurs considerable computational expenses whenever massive simulations are involved (e.g., parametric optimization, uncertainty quantification). This high cost is the most serious bottleneck of simulation-driven...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublicationSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Parameters optimization in medicine supporting image recognition algorithms
PublicationIn this paper, a procedure of automatic set up of image recognition algorithms' parameters is proposed, for the purpose of reducing the time needed for algorithms' development. The procedure is presented on two medicine supporting algorithms, performing bleeding detection in endoscopic images. Since the algorithms contain multiple parameters which must be specified, empirical testing is usually required to optimise the algorithm's...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
Bayesian Optimization for solving high-frequency passive component design problems
PublicationIn this paper, the performance of the Bayesian Optimization (BO) technique applied to various problems of microwave engineering is studied. Bayesian optimization is a novel, non-deterministic, global optimization scheme that uses machine learning to solve complex optimization problems. However, each new optimization scheme needs to be evaluated to find its best application niche, as there is no universal technique that suits all...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublicationIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
PublicationElectromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating...
-
Solar Photovoltaic Energy Optimization and Challenges
PublicationThe study paper focuses on solar energy optimization approaches, as well as the obstacles and concerns that come with them. This study discusses the most current advancements in solar power generation devices in order to provide a reference for decision-makers in the field of solar plant construction throughout the world. These technologies are divided into three groups: photovoltaic, thermal, and hybrid (thermal/photovoltaic)....
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublicationAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Solar Photovoltaic Energy Optimization and Challenges
PublicationThe study paper focuses on solar energy optimization approaches, as well as the obstacles and concerns that come with them. This study discusses the most current advancements in solar power generation devices in order to provide a reference for decision-makers in the field of solar plant construction throughout the world. These technologies are divided into three groups: photovoltaic, thermal, and hybrid (thermal/photovoltaic)....
-
Frequency-Based Regularization for Improved Reliability Optimization of Antenna Structures
PublicationThe paper proposes a modified formulation of antenna parameter tuning problem. The main ingredient of the presented approach is a frequency-based regularization. It allows for smoothening the functional landscape of the assumed cost function, defined to encode the prescribed design specifications. The regularization is implemented as a special penalty term complementing the primary objective and enforcing the alignment of the antenna...
-
Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design
PublicationParameter optimization, also referred to as design closure, is imperative in the development of modern antennas. Theoretical considerations along with rough dimension adjustment through supervised parameter sweeping can only yield initial designs that need to be further tuned to boost the antenna performance. The major challenges include handling of multi-dimensional parameter spaces while accounting for several objectives and...
-
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublicationThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
Global sensitivity analysis of membrane model of abdominal wall with surgical mesh
PublicationThe paper addresses the issue of ventral hernia repair. Finite Element simulations can be helpful in the optimization of hernia parameters. A membrane abdominal wall model is proposed in two variants: a healthy one and including hernia defect repaired by implant. The models include many uncertainties, e.g. due to variability of abdominal wall, intraabdominal pressure value etc. Measuring mechanical properties with high accuracy...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublicationThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Compact global association based adaptive routing framework for personnel behavior understanding
PublicationPersonnel behavior understanding under complex scenarios is a challenging task for computer vision. This paper proposes a novel Compact model, which we refer to as CGARPN that incorporates with Global Association relevance and Adaptive Routing Pose estimation Network. Our framework firstly introduces CGAN backbone to facilitate the feature representation by compressing the kernel parameter space compared with typical algorithms,...
-
Changes in the Global Competitiveness Index 4.0 Methodology: The Improved Approach of Competitiveness Benchmarking
PublicationThe Global Competitiveness Index (GCI) developed by the World Economic Forum (WEF) is used as a standard for measuring a country’s competitiveness. However, in literature, the GCI has been accused of numerous methodological flaws. Consequently, in 2018, the WEF introduced significant methodological changes. This study aims to examine whether the methodological modifications in the GCI’s structure increase its ability to capture...
-
Arterial cannula shape optimization by means of the rotational firefly algorithm
PublicationThe article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm,...
-
Rapid Antenna Optimization with Restricted Sensitivity Updates by Automated Dominant Direction Identification
PublicationMeticulous tuning of geometry parameters turns pivotal in improving performance of antenna systems. It is more and more often realized using formal optimization methods, which is demonstrably the most efficient way of handling multiple design variables, objectives, and constraints. Although in some cases a need for launching global search arises, a typical design scenario only requires local optimization, especially when a decent...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Reduced-Cost Design Optimization of High-Frequency Structures Using Adaptive Jacobian Updates
PublicationElectromagnetic (EM) analysis is the primary tool utilized in the design of high-frequency structures. In vast majority of cases, simpler models (e.g., equivalent networks or analytical ones) are either not available or lack accuracy: they can only be used to yield initial designs that need to be further tuned. Consequently, EM-driven adjustment of geometry and/or material parameters of microwave and antenna components is a necessary...
-
Globalized Knowledge-Based Simulation-Driven Antenna Miniaturization Using Domain-Confined Surrogates and Dimensionality Reduction
PublicationDesign of contemporary antenna systems encounters multifold challenges, one of which is a limited size. Compact antennas are indispensable for the new fields of application such as inter-net of things or 5G/6G mobile communication. Still, miniaturization generally undermines elec-trical and field performance. When attempted through numerical optimization, it turns into a constrained problem with costly constraints requiring electromagnetic...