Filters
total: 681
filtered: 652
Search results for: MULTI-OBJECTIVE QUANTUM-INSPIRED SEAGULL OPTIMIZATION ALGORITHM
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublicationPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models
PublicationEver increasing performance requirements make the design of contemporary antenna systems a complex and multi-stage process. One of the challenges, pertinent to the emerging application areas but also some of the recent trends (miniaturization, demands for multi-functionality, etc.), is the necessity of handling several performance figures such as impedance matching, gain, or axial ratio, often over multiple frequency bands. The...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems
PublicationA multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
On Fast Multi-objective Optimization of Antenna Structures Using Pareto Front Triangulation and Inverse Surrogates
PublicationDesign of contemporary antenna systems is a challenging endeavor, where conceptual developments and initial parametric studies, interleaved with topology evolution, are followed by a meticulous adjustment of the structure dimensions. The latter is necessary to boost the antenna performance as much as possible, and often requires handling several and often conflicting objectives, pertinent to both electrical and field properties...
-
Model Management for Low-Computational-Budget Simulation-Based Optimization of Antenna Structures Using Nature-Inspired Algorithms
PublicationThe primary objective of this study is investigation of the possibilities of accelerating nature-inspired optimization of antenna structures using multi-fidelity EM simulation models. The primary methodology developed to achieve acceleration is a model management scheme which the level of EM simulation fidelity using two criteria: the convergence status of the optimization algorithm, and relative quality of the individual designs...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Multi-criterion, evolutionary and quantum decision making in complex systems
PublicationMulti-criterion, evolutionary and quantum decision making supported by the Adaptive Quantum-based Multi-criterion Evolutionary Algorithm (AQMEA) has been considered for distributed complex systems. AQMEA had been developed to the task assignment problem, and then it has been applied to underwater vehicle planning as another benchmark three-criterion optimization problem. For evaluation of a vehicle trajectory three criteria have...
-
Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: cogeneration and condensation
PublicationDue to the demand of the district heating network and electric power grid ORC turbines can operate in the condensation and cogeneration modes. This approach requires the design of an expander which is characterized by high efficiency in each mode of operation. The paper is devoted to a multi-objective efficiency optimization of a one stage axial ORC turbine working on MM (Hexamethyldisiloxane). An Implicit Filtering algorithm (IF)...
-
Generic appearance of objective results in quantum measurements
PublicationMeasurement is of central interest in quantum mechanics as it provides the link between the quantum world and the world of everyday experience. One of the features of everyday experience is its robust, objective character, contrasting the delicate nature of quantum systems. Here we analyze in a completely model-independent way the celebrated von Neumann measurement process, using recent techniques of information flow, studied in...
-
Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation
PublicationCost-efficient multi-objective design optimization of antennas is presented. The framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order...
-
Minimizing Greenhouse Gas Emissions From Ships Using a Pareto Multi-Objective Optimization Approach
PublicationTo confront climate change, decarbonization strategies must change the global economy. According to statements made as part of the European Green Deal, maritime transport should also become drastically less polluting. As a result, the price of transport must reflect the impact it has on the environment and on health. In such a framework, the purpose of this paper is to suggest a novel method for minimizing emissions...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Multi-objective weather routing of sailing vessels
PublicationThe paper presents a multi-objective deterministic method of weather routing for sailing vessels. Depending on a particular purpose of sailboat weather routing, the presented method makes it possible to customize the criteria and constraints so as to fit a particular user’s needs. Apart from a typical shortest time criterion, safety and comfort can also be taken into account. Additionally, the method supports dynamic weather data:...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublicationIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Multi-objective Weather Routing with Customised Criteria and Constraints
PublicationThe paper presents a weather routing algorithm utilising a multi-objective optimisation with constraints, namely the Multi-objective Evolutionary Weather Routing Algorithm (MEWRA). In the proposed approach weather route recommendations can be made simultaneously e.g. for passage time, fuel consumption and safety of passage by means of Pareto optimisation. The sets of criteria and constraints in the optimisation process are fully...
-
EVOLUTIONARY MULTI–OBJECTIVE WEATHER ROUTING OF SAILBOATS
PublicationThe paper presents a multi-objective method, which optimises the route of a sailboat. The presented method makes use of an evolutionary multi-objective (EMO) algorithm, which performs the optimisation according to three objective functions: total passage time, a sum of all course alterations made during the voyage and the average angle of heel. The last two of the objective functions reflect the navigator’s and passenger’s comfort,...
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublicationAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Multi-objective optimization of compact UWB impedance matching transformers using Pareto front exploration and adjoint sensitivities
PublicationIn this paper, a technique for fast multi-objective optimization of impedance matching transformers has been presented. In our approach, a set of alternative designs that represent the best possible trade-offs between conflicting objectives (here, the maximum reflection level within a frequency band of interest and the circuit size) is identified by directly exploring the Pareto front. More specifically, the subsequent Pareto-optimal...
-
Fast Multi-Objective Optimization of Narrow-Band Antennas Using RSA Models and Design Space Reduction
PublicationComputationally efficient technique for multi-objective design optimization of narrow-band antennas is presented. In our approach, the corrected low-fidelity antenna model (obtained through coarse-discretization EM simulations) is enhanced using frequency scaling and response correction, sampled, and utilized to obtain a fast response surface approximation (RSA) antenna surrogate. The RSA model is constructed in the reduced design space....
-
Fast Multi-Objective Antenna Design Through Variable-Fidelity EM Simulations
PublicationA technique for fast multi-objective antenna optimization is introduced. A kriging interpolation surrogate constructed from sampled coarse-mesh EM simulations is utilized by multi-objective evolutionary algorithm (MOEA) to obtain the initial Pareto front approximation. The surrogate is defined in a subset of the original design space, determined by means of independently optimized individual objectives. Response correction techniques...
-
Three-objective antenna optimization by means of kriging surrogates and domain segmentation
PublicationIn this paper, an optimization framework for multi-objective design of antenna structures is discussed which exploits data-driven surrogates, a multi-objective evolutionary algorithm, response correction techniques for design refinement, as well as generalized domain segmentation. The last mechanism is introduced to constrain the design space region subjected to sampling, which permits reduction of the number of training data samples...
-
Downside Risk Approach for Multi-Objective Portfolio Optimization
Publication -
Multi-Objective Portfolio Optimization by Mixed Integer Programming
Publication -
Genetics algorithms in multi-objective optimization of detection observer
PublicationW rozdziale przedstawia się możliwości zastosowania podejścia genetycznegodo zagadnień wielokryterialnej optymalizacji w przestrzeniach wielowymiaro-wych z wykorzystaniem koncepcji optymalności w sensie Pareto. Jako przykładilustrujący rozważane podejście daje się zadanie syntezy obserwatorów stanusłużących wykrywaniu błądów występujących w układzie sterowania bezzałogowe-go statku latającego oraz w układzie napędowym jednostki...
-
Efficient Multi-Objective Simulation-Driven Antenna Design Using Co-Kriging
PublicationA methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto...
-
Multi-objective design of miniaturized impedance transformers by domain segmentation
PublicationFast multi-objective design optimization of compact microstrip impedance transformers is discussed. Our approach exploits approximation models constructed using sampled coarse- mesh EM simulation data in a partitioned design space and response correction techniques for design refinement. Demonstra
-
Low-cost multi-objective design of compact microwave structures using domain patching
PublicationA good compromise between size and electrical performance is an important design consideration for compact microwave structures. Comprehensive information about size/performance trade-offs can be obtained through multi-objective optimization. Due to considerable electromagnetic (EM) cross-couplings in highly compressed layouts, the design process has to be conducted at the level of high-fidelity EM analysis which is computationally...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
Memetic approach for multi-objective overtime planning in software engineering projects
PublicationSoftware projects often suffer from unplanned overtime due to uncertainty and risk incurred due to changing requirement and attempt to meet up with time-to-market of the software product. This causes stress to developers and can result in poor quality. This paper presents a memetic algorithmic approach for solving the overtime-planning problem in software development projects. The problem is formulated as a three-objective optimization...
-
Multi-criterion decision making in distributed systems by quantum evolutionary algorithms
PublicationDecision making by the AQMEA (Adaptive Quantum-based Multi-criterion Evolutionary Algorithm) has been considered for distributed computer systems. AQMEA has been extended by a chromosome representation with the registry of the smallest units of quantum information. Evolutionary computing with Q-bit chromosomes has been proofed to characterize by the enhanced population diversity than other representations, since individuals represent...
-
Multi-objective optimization of tool wear, surface roughness, and material removal rate in finishing honing processes using adaptive neural fuzzy inference systems
PublicationHoning processes are usually employed to manufacture combustion engine cylinders and hydraulic cylinders. A crosshatch pattern is obtained that favors the oil flow. In this paper, Adaptive Neural Fuzzy Inference System (ANFIS) models were obtained for tool wear, average roughness Ra, cylindricity and material removal rate in finish honing processes. In addition, multi-objective optimization with the desirability function method...
-
Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor
PublicationHydrodynamic cavitation (HC) has been widely considered a promising technique for industrial-scale process intensifications. The effectiveness of HC is determined by the performance of hydrodynamic cavitation reactors (HCRs). The advanced rotational HCRs (ARHCRs) proposed recently have shown superior performance in various applications, while the research on the structural optimization is still absent. The present study, for the...
-
Survey of multi-objective portfolio optimization by linear and mixed integer programming
Publication -
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters
PublicationIn this paper, the fracture behavior and fatigue crack growth rate of the 2024-T351 aluminum alloy has been investigated. At first, the 2024-T351 aluminum alloys have been welded using friction stir welding procedure and the fracture toughness and fatigue crack growth rate of the CT specimens have been studied experimentally based on ASTM standards. After that, in order to predict fatigue crack growth rate and fracture toughness,...
-
Strategies for computationally feasible multi-objective simulation-driven design of compact RF/microwave components
PublicationMulti-objective optimization is indispensable when possible trade-offs between various (and usually conflicting) design objectives are to be found. Identification of such design alternatives becomes very challenging when performance evaluation of the structure/system at hand is computationally expensive. Compact RF and microwave components are representative examples of such a situation: due to highly compressed layouts and considerable...
-
Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
PublicationThe objective of this paper is to present a robust optimization algorithm for computationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in the optimization process. A combined NIPC expansion approach is used, where both...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Applications of semi-definite optimization in quantum information protocols
PublicationThis work is concerned with the issue of applications of the semi-definite programming (SDP) in the field of quantum information sci- ence. Our results of the analysis of certain quantum information protocols using this optimization technique are presented, and an implementation of a relevant numerical tool is introduced. The key method used is NPA discovered by Navascues et al. [Phys. Rev. Lett. 98, 010401 (2007)]. In chapter...
-
Rapid multi-objective simulation-driven design of compact microwave circuits
PublicationA methodology for rapid multi-objective design of compact microwave circuits is proposed. Our approach exploits point-by-point Pareto set identification using surrogate-based optimization techniques, auxiliary equivalent circuit models, and space mapping as the major model correction method. The proposed technique is illustrated and validated through the design of a compact rat-race coupler. A set of ten designs being trade-offs...
-
Conditional Value-at-Risk Vs. Value-at-Risk to Multi-Objective Portfolio Optimization
Publication -
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Multi-objective electric distribution network reconfiguration solution using runner-root algorithm
Publication -
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublicationA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
Arterial cannula shape optimization by means of the rotational firefly algorithm
PublicationThe article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm,...