Filters
total: 259
filtered: 258
Chosen catalog filters
Search results for: SURROGATE MODEL
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Fast surrogate-assisted simulation-driven design of compact microwave hybrid couplers
PublicationThis work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bot-tom–up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublicationFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublicationAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublicationReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
A Surrogate-Assisted Measurement Correction Method for Accurate and Low-Cost Monitoring of Particulate Matter Pollutants
PublicationAir pollution involves multiple health and economic challenges. Its accurate and low-cost monitoring is important for developing services dedicated to reduce the exposure of living beings to the pollution. Particulate matter (PM) measurement sensors belong to the key components that support operation of these systems. In this work, a modular, mobile Internet of Things sensor for PM measurements has been proposed. Due to a limited...
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublicationThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Explicit Size-Reduction-Oriented Design of a Compact Microstrip Rat-Race Coupler Using Surrogate-Based Optimization Methods
PublicationIn this paper, an explicit size reduction of a compact rat-race coupler implemented in a microstrip technology is considered. The coupler circuit features a simple topology with a densely arranged layout that exploits a combination of high- and low-impedance transmission line sections. All relevant dimensions of the structure are simultaneously optimized in order to explicitly reduce the coupler size while maintaining equal power...
-
Rapid design of miniaturised branch-line couplers through concurrent cell optimisation and surrogate-assisted fine-tuning
PublicationIn this study, the authors introduce a methodology for low-cost simulation-driven design optimisation of highly miniaturised branch-line couplers (BLCs). The first stage of their design approach exploits fast concurrent optimisation of geometrically dependent, but electromagnetically isolated cells that constitute a BLC. The cross-coupling effects between the cells are taken into account in the second stage, where a surrogate-assisted...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Adaptive CAD-Model Construction Schemes
PublicationTwo advanced surrogate model construction techniques are discussed in this paper. The models employ radial basis function (RBF)interpolation scheme or artificial neural networks (ANN) with a new training algorithm. Adaptive sampling technique is applied withrespect to all variables. Histograms showing the quality of the models are presented. While the quality of RBF models is satisfactory, theperformance of the ANN models obtained...
-
Small Antenna Design Using Surrogate-Based Optimization
PublicationIn this work, design of small antennas using efficient numerical optimization is investigated. We exploit variable-fidelity electromagnetic (EM) simulations and the adaptively adjusted design specifications (AADS) technique. Combination of these methods allows us to simultaneously adjust multiple geometry parameters of the antenna structure of interest in a computationally feasible manner, leading to substantial reduction of the...
-
Fast surrogate-assisted frequency scaling of planar antennas with circular polarisation
PublicationIn this work, the problem of computationally efficient frequency scaling (re-design) of circular polarisation antennas is addressed using surrogate-assisted techniques. The task is challenging and requires the identification of the optimum geometry parameters to enable the operation of the re-designed structure at a selected (required) centre frequency. This involves handling several performance figures such as the antenna gain,...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Surrogate-Assisted Design of Checkerboard Metasurface for Broadband Radar Cross-Section Reduction
PublicationMetasurfaces have been extensively exploited in stealth applications to reduce radar cross section (RCS). They rely on the manipulation of backward scattering of electromagnetic (EM) waves into various oblique angles. However, arbitrary control of the scattering properties poses a significant challenge as a design task. Yet it is a principal requirement for making RCS reduction possible. This article introduces a surrogate-based...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublicationSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
Kriging Models for Microwave Filters
PublicationSurrogate modeling of microwave filters’ response is discussed. In particular, kriging is used to model either the scattering parameters of the filter or the rational representation of the filter’s characteristics. Surrogate models for these two variants of kriging are validated in solving a microwave filter optimization problem. A clear advantage of surrogate models based on the rational representation over the models based on scattering...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublicationThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
-
Rapid Microwave Design Optimization in Frequency Domain Using Adaptive Response Scaling
PublicationIn this paper, a novel methodology for cost-efficient microwave design optimization in the frequency domain is proposed. Our technique, referred to as adaptive response scaling (ARS), has been developed for constructing a fast replacement model (surrogate) of the high-fidelity electromagnetic-simulated model of the microwave structure under design using its equivalent circuit (low-fidelity model). The basic principle of ARS is...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublicationA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Expedited Multi-Objective Design Optimization of Miniaturized Microwave Structures Using Physics-Based Surrogates
PublicationIn this paper, a methodology for fast multi-objective design optimization of compact microwave circuits is presented. Our approach exploits an equivalent circuit model of the structure under consideration, corrected through implicit and frequency space mapping, then optimized by a multi-objective evolutionary algorithm. The correction/optimization of the surrogate is iterated by design space confinement and segmentation based on...
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublicationElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
Design-Oriented Constrained Modeling of Antenna Structures
PublicationFast surrogate models are crucially important to reduce the cost of design process of antenna structures. Due to curse of dimensionality, standard (data-driven) modeling methods exhibit serious limitations concerning the number of independent geometry parameters that can be handled but also (and even more importantly) their parameter ranges. In this work, a design-oriented modeling framework is proposed in which the surrogate is...
-
Multiobjective Aerodynamic Optimization by Variable-Fidelity Models and Response Surface Surrogates
PublicationA computationally efficient procedure for multiobjective design optimization with variable-fidelity models and response surface surrogates is presented. The proposed approach uses the multiobjective evolutionary algorithm that works with a fast surrogate model, obtained with kriging interpolation of the low-fidelity model data enhanced by space-mapping correction exploiting a few high-fidelity training points. The initial Pareto...
-
Fast geometry scaling of miniaturized microwave couplers with power split correction
PublicationRedesigning a microwave circuit for various operating conditions is a practically important yet challenging problem. The purpose of this article is development and presentation of a technique for fast geometry scaling of miniaturized microwave couplers with respect to operating frequency. Our approach exploits an inverse surrogate model constructed using several reference designs that are optimized for a set of operating frequencies...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublicationA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
Rapid multi-objective design optimisation of compact microwave couplers by means of physics-based surrogates
PublicationThe authors introduce a methodology for fast multi-objective design optimisation of miniaturised microwave couplers. The approach exploits the surrogate-based optimisation paradigm with an underlying low-fidelity model constructed from an equivalent circuit of the structure under consideration, corrected through implicit and frequency space mapping. A fast prediction tool obtained this way is subsequently optimised by a multi-objective...
-
Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
PublicationThe objective of this paper is to present a robust optimization algorithm for computationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in the optimization process. A combined NIPC expansion approach is used, where both...
-
On Decomposition-Based Surrogate-Assisted Optimization of Leaky Wave Antenna Input Characteristics for Beam Scanning Applications
PublicationRecent years have witnessed a growing interest in reconfigurable antenna systems. Travelling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process of TWAs/LWAs is a challenging endeavor...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublicationA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublicationData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Accelerated simulation-driven design optimisation of compact couplers by means of two-level space mapping
PublicationIn this study, the authors discuss a robust and efficient technique for rapid design of compact couplers. The approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the coupler structure under design. The first SM layer (local correction) is utilised to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. Subsequent global correction allows...
-
5-formylcytosine and 5-hydroxymethyluracil as surrogate markers of TET2 and SF3B1 mutations in myelodysplastic syndrome, respectively
Publication -
Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization
PublicationMiniaturization of microwave hybrid couplers is important for contemporary wireless communication engineering. Using standard computer-aided design methods for development of compact structures is extremely challenging due to a general lack of computationally efficient and accurate simulation models. Poor accuracy of available equivalent circuits results from neglecting parasitic cross-couplings that greatly affect the performance...
-
Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates
PublicationOver the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious...
-
Rapid simulation-driven design of miniaturised dual-band microwave couplers by means of adaptive response scaling
PublicationOne of the major challenges in the design of compact microwave structures is the necessity of simultaneous handling of several objectives and the fact that expensive electromagnetic (EM) analysis is required for their reliable evaluation. Design of multi-band circuits where performance requirements are to be satisfied for several frequencies at the same time is even more difficult. In this work, a computationally efficient design...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space
PublicationA surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective...
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublicationIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Rapid dimension scaling of compact microwave couplers with power split correction
PublicationIn this paper, a technique for rapid re-design ofcompact microwave couplers with respect to operating frequency is discussed. Our methodology involves an inverse surrogate model setup using several reference designs optimized (at the level of equivalent circuit representation of the coupler) for a set of operating frequencies within a range of interest. The surrogate establishes the relationship between the operating frequency...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublicationIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
PublicationIn this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
EM-Driven Multi-Objective Optimization of Antenna Structures in Multi-Dimensional Design Spaces
PublicationFeasible multi-objective optimization of antenna structures is presented. An initial set of Pareto optimal solutions is found using a multi-objective evolutionary algorithm (MOEA) working with a fast surrogate antenna model obtained by kriging interpolation of coarse-discretization EM simulation data. To make the surrogate construction computationally feasible in multi-dimensional design space, the space subset containing non-dominated...
-
Low-cost and reliable geometry scaling of compact microstrip couplers with respect to operating frequency, power split ratio, and dielectric substrate parameters
PublicationA technique for rapid re-design of miniaturised microstrip couplers with respect to operating conditions as well as material parameters of the dielectric substrate is proposed. The dimension scaling process is based on a set of pre-optimised reference designs, obtained for an equivalent circuit model of the coupler at hand. The reference designs are utilised to construct an inverse surrogate model which – upon suitable correction...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Fast multi-criterial statistical analysis and design optimization of compact microwave couplers
Publication—A rapid statistical analysis and yield estimation of compact microwave couplers involving multiple performance parameters has been presented. The analysis is realized using a fast surrogate model representing appropriate characteristic points of the coupler response. Because of less nonlinear dependence of the characteristic points on the structure geometry (compared to the original response, i.e., S-parameters vs. frequency),...