Filters
total: 102
Search results for: FRACTIONAL MODELING
-
Diffusion process modeling by using fractional-order models
Publication -
Modeling Heat Transfer in Heterogeneous Media Using Fractional Calculus
Publication -
Ultracapacitor modeling and control with discrete fractional order artificial neural network
Publication -
New method of fractional order integrator analog modeling for orders 0.5 and 0.25
Publication -
Fractional Order Dynamic Positioning Controller
PublicationImproving the performance of Dynamic Positioning System in such applications as station keeping, position mooring and slow speed references tracking requires improving the position and heading control precision. These goals can be achieved through the improvement of the ship control system. Fractional-order calculus is a very useful tool which extends classical, integer-order calculus and is used in contemporary modeling and control...
-
Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)
PublicationThe paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...
-
On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited...
-
Free volume in physical absorption of carbon dioxide in ionic liquids: Molecular dynamics supported modeling
PublicationUnderstanding the mechanisms underlying the carbon dioxide (CO2) absorption in ionic liquids (ILs) is the key to their efficient utilization in industrial flue gas treatment. One of the parameters considered substantially important in the process is the Free Volume. In this study, the Fractional Free Volume (FFV) of 73 ILs was calculated using Molecular Dynamics (MD). A quantitative Structure-Property Relationship (QSPR) study...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublicationThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
Fractional neutron point kinetics equations for nuclear reactor dynamics – Numerical solution investigations
PublicationThis paper presents results concerning numerical solutions to a fractional neutron point kinetics model for a nuclear reactor. The paper discusses and expands on results presented in (Espinosa-Paredes et al., 2011). The fractional neutron point kinetics model with six groups of delayed neutron precursors was developed and a numerical solution using the Edwards’ method was proposed (Edwards et al., 2002). The mathematical model...
-
Using water sources extent during inundation as a reliable predictor for vegetation zonation in a natural wetland floodplain
PublicationDistinctive zones of inundation water during floods were shown to originate from different sources in some major floodplains around the world. Recent research showed that the zonation of water in rivers and floodplains is related to vegetation patterns. In spite of this, water source zones were not used for vegetation modeling due to difficulties in their delineation. In this study, we used simulation results of a fully-coupled...
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublicationIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
On Sample Rate Conversion Based on Variable Fractional Delay Filters
PublicationThe sample rate conversion algorithm based on variable fractional delay filters is often used if the resampling ratio cannot be expressed as the ratio of small integer numbers or if it is not constant. The main advantage of such solution is that it allows for arbitrary resampling ratios which can even be changed during the resampling process. In this paper a discussion on influence of different approaches to fractional filter...
-
Electromagnetic-based derivation of fractional-order circuit theory
PublicationIn this paper, foundations of the fractional-order circuit theory are revisited. Although many papers have been devoted to fractional-order modelling of electrical circuits, there are relatively few foundations for such an approach. Therefore, we derive fractional-order lumped-element equations for capacitors, inductors and resistors, as well as Kirchhoff’s voltage and current laws using quasi-static approximations of fractional-order...
-
Fractional problems with advanced arguments
PublicationThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
Numerical Investigation of Nuclear Reactor Kinetic and Heat Transfer Fractional Model with Temperature Feedback
PublicationAbstract—In the paper, the numerical results concerning the kinetics and proposed heat exchange models in nuclear reactor based on fractional calculus are presented for typical inputs. Two fractional models are proposed and compared with the model based on ordinary derivative. The first fractional model is based on one of the generalized Cattaneo equations. The second one is based on replacing the ordinary to fractional order of...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Systems of Nonlinear Fractional Differential Equations
PublicationUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator
PublicationA new approach is used to investigate the analytical solutions of the mathematical fractional Casson fluid model that is described by the Constant Proportional Caputo fractional operator having non-local and singular kernel near an infinitely vertical plate. The phenomenon has been expressed in terms of partial differential equations, and the governing equations were then transformed in non-dimensional form. For the sake of generalized...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublicationThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Boundary problems for fractional differential equations
PublicationIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof
PublicationRecently, the fractional Noether's theorem derived by G. Frederico and D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B. Malinowska in (see [7]) using a counterexample and doubts are stated about the validity of other Noether's type Theorem, in particular ([9],Theorem 32). However, the counterexample does not explain why and where the proof given in [10] does not work. In this paper, we make a detailed analysis...
-
Numerical solution of fractional neutron point kinetics in nuclear reactor
PublicationThis paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme...
-
Comments on various extensions of the Riemann–Liouville fractional derivatives : About the Leibniz and chain rule properties
PublicationStarting from the Riemann–Liouville derivative, many authors have built their own notion of fractional derivative in order to avoid some classical difficulties like a non zero derivative for a constant function or a rather complicated analogue of the Leibniz relation. Discussing in full generality the existence of such operator over continuous functions, we derive some obstruction Lemma which can be used to prove the triviality...
-
Square Root Raised Cosine Fractionally Delaying Nyquist Filter - Design and Performance Evaluation
PublicationIn this paper we propose a discrete-time FIR (Finite Impulse Response) filter which is applied as a square root Nyquist filter and fractional delay filter simultaneously. The filter enables to substitute for a cascade of square root Nyquist filter and fractional delay filter in one device/algorithm. The aim is to compensate for transmission delay in digital communication system. Performance of the filter as a matched filter is...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
PublicationTo obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting...
-
Numerical and quantitative analysis of HIV/AIDS model with modified Atangana-Baleanu in Caputo sense derivative
PublicationFractional calculus plays an important role in the development of control strategies, the study of the dynamical transmission of diseases, and some other real-life problems nowadays. The time-fractional HIV/AIDS model is examined using a novel method in this paper. Based on the Atangana-concept Baleanu’s of a derivative in the Caputo sense, the current modified fractional derivative operator uses singular and non-local kernels....
-
Fractional-order Systems and Synchronous Generator Voltage Regulator
PublicationModern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublicationThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
efficient fractional delay hilbert transform filter in the farrow structure
PublicationIn this paper the design and application of a Fractional Delay Hilbert Transform Filter (FDHTF) into an adaptive sub-sample delay estimation between two separated sinusoidal signals is considered. The FDHTF incorporates the functions of Hilbertian and variable fractional delay filtering of the incoming signal simultaneously, in one stage. In traditional approach each of these operations was performed separately. Obtained value...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublicationIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Square root RC Nyquist filter of fractional delay
PublicationIn this paper we propose a discrete-time FIR (finite impulse response) filter which couples the role of square root Nyquist filter with fractional delay filter. This filter enables to substitute for a cascade of square root RC (SRRC) Nyquist filter and fractional delay filter in one device/algorithm. The aim is to compensate for transmission delay in communication system. Statistically defined performances, e.g. BER (bit error...
-
Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative
PublicationIn this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublicationIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
Numerical solution analysis of fractional point kinetics and heat exchange in nuclear reactor
PublicationThe paper presents the neutron point kinetics and heat exchange models for the nuclear reactor. The models consist of a nonlinear system of fractional ordinary differential and algebraic equations. Two numerical algorithms are used to solve them. The first algorithm is application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. The second involves building an analog scheme in the FOMCON Toolbox...
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
Miniaturized dual‐band branch‐line coupler with enhanced bandwidth
PublicationIn this letter, a miniaturized hybrid dual-band branch-line coupler (BLC) with enhanced fractional bandwidths is proposed. Compact size and bandwidth enhancement are obtained using meandered transmission line sections with broken symmetry between cross-coupling branches. The circuit is designed at a low numerical cost using surrogate-assisted techniques. The optimized design features small size of only 0.25λg×0.19λg(28% miniaturization...
-
Simulation of Signal Propagation Along Fractional-Order Transmission Lines
PublicationIn this paper, the simulation method of signal propagation along fractional-order (FO) transmission lines is presented. Initially, fractional calculus and the model of FO transmission line are introduced. Then, the algorithm allowing for simulation of the nonmonochromatic wave propagation along FO transmission lines is presented. It employs computations in the frequency domain, i.e., an analytical excitation is transformed to the...
-
Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment
PublicationWe study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k_{B}T, which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar...
-
FIR Filter Design Using Distributed Maximal Flatness Method
PublicationIn the paper a novel method for filter design based on the distributed maximal flatness method is presented. The proposed approach is based on the method used to design the most common FIR fractional delay filter - the maximally flat filter. The MF filter demonstrates excellent performance but only in a relatively narrow frequency range around zero frequency but its magnitude response is no greater than one. This ,,passiveness”...
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Variable Ratio Sample Rate Conversion Based on Fractional Delay Filter
PublicationIn this paper a sample rate conversion algorithm which allows for continuously changing resampling ratio has been presented. The proposed implementation is based on a variable fractional delay filter which is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis of fractional delay filters which are designed using the offset window method. The proposed approach allows us to freely...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublicationA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublicationIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...
-
Fractional differential equations with causal operators
PublicationWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
Successive Iterative Method for Higher-Order Fractional Differential Equations Involving Stieltjes Integral Boundary Conditions
PublicationIn this paper, the existence of positive solutions to fractional differential equations with delayed arguments and Stieltjes integral boundary conditions is discussed. The convergence of successive iterative method of solving such problems is investigated. This allows us to improve some recent works. Some numerical examples illustrate the results.
-
Modelling and simulations in time-fractional electrodynamics based on control engineering methods
PublicationIn this paper, control engineering methods are presented with regard to modelling and simulations of signal propagation in time-fractional (TF) electrodynamics. That is, signal propagation is simulated in electromagnetic media described by Maxwell’s equations with fractional-order constitutive relations in the time domain. We demonstrate that such equations in TF electrodynamics can be considered as a continuous-time system of...