Search results for: monopulse antenna, dielectric lens, wideband antenna
-
A structure and simulation-driven design of compact CPW-fed UWB antenna
PublicationIn this letter, a structure of a miniaturized ultra-wideband CPW-fed antenna and its design proce-dure are presented. The antenna is a modified version of the design previously proposed in the literature, with additional degrees of freedom introduced in order to improve the structure flexibility. The small size is achieved by executing a rigorous optimization procedure that consists of two stages: (i) smart random search carried...
-
Enhanced-Performance Circularly Polarized MIMO Antenna with Polarization/Pattern Diversity
PublicationDesign of a compact wideband circularly polarized (CP) multiple-input multiple-output (MIMO) antenna with polarization diversity is proposed and characterized for off-body communication. The antenna is based on a simple coplanar waveguide (CPW)-fed monopole extension of the microstrip line. The orthogonal field components required by CP are induced using a simply modified right/left side ground plane. In particular, a stub extending...
-
Design optimization of novel compact circular polarization antenna
PublicationThe paper describes a structure and a design optimization procedure of a miniaturized circular polarization antenna with elliptical ground plane slots and feed line with stepped-impedance stubs. Constrained optimization of all antenna parameters is executed in order to explicitly reduce the antenna size while maintaining required impedance axial ratio bandwidth of 5 GHz to 7 GHz at the same time. The size of the optimized antenna...
-
Miniature reconfigurable antenna
PublicationThis work concerns the design of a miniature, low-profile reconfigurable antenna based on Huygens metamaterial sources for frequency f0 = 2.45 GHz. Two planar Huygens sources were designed consisting of near-field resonators. Sources are excited from a specially designed reconfigurable control system. Thanks to the two PIN diodes, the system can realize two cardioid radiation characteristics with...
-
Single-Anchor Indoor Localization Using ESPAR Antenna
PublicationIn this paper a new single-anchor indoor localization concept employing Electronically Steerable Parasitic Array Radiator (ESPAR) antenna has been proposed. The new concept uses a simple fingerprinting algorithm adopted to work with directional main beam and narrow minimum radiation patterns of ESPAR antenna that scans 360° area around the base station, while the signal strength received from a mobile terminal is being recorded...
-
Design-Oriented Constrained Modeling of Antenna Structures
PublicationFast surrogate models are crucially important to reduce the cost of design process of antenna structures. Due to curse of dimensionality, standard (data-driven) modeling methods exhibit serious limitations concerning the number of independent geometry parameters that can be handled but also (and even more importantly) their parameter ranges. In this work, a design-oriented modeling framework is proposed in which the surrogate is...
-
Fast Simulation-Driven Design of a Planar UWB Dipole Antenna with an Integrated Balun
PublicationThe paper presents a design of an ultra-wideband (UWB) antenna with an integrated balun. A fully planar balun interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure includes the dipole, the balun, and the microstrip input to account for interactions over the UWB band. The EM model is adjusted for low reflection...
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublicationIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
-
Filtering EBG Structures Implemented in Coplanar Waveguide Feedline of Planar Slot Antenna
PublicationA novel compact dual-band slot antenna fed by a coplanar waveguide (CPW) incorporating electromagnetic band gap (EBG) structures has been proposed. At first, a classic wideband slot antenna fed by a CPW, dedicated to work in 2 ÷ 18 GHz band, has been designed. Subsequently, by adding simple EBG filtering structures into a CPW feedline, a dual-band performance ranging from 2.5 to 5.3 GHz and from 13.5 to 16.3 GHz, with the voltage...
-
A Series-Inclined-Slot-Fed Circularly Polarized Antenna for 5G 28-GHz Applications
PublicationThis letter presents the design of a single-point-fed, geometrically simple circularly polarized (CP) antenna for 28 GHz Ka-band applications. The proposed antenna is based on a straight microstrip line printed on one side and coupled with the nearly square patches through a 45-degree inclined V-shape slot aperture on the other side. In order to generate circular polarization, the fundamental radiating mode is degenerated at a...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublicationIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Diagnostics of thermal processes in antenna systems of broadcast stations
PublicationDiagnostics is an important element associated with the operation of a radio antenna systems, allowing earlier detection of potential damage. Thermography is one of the diagnostic tools, which allows for non-invasive assessment of technical condition. It brings together both financial savings associated with the removal of the damage and the potential effects caused by it. The article presents an example of using a thermal imaging...
-
Compact antenna array comprising fractal-shaped microstripradiators
PublicationA design method of antenna array consisting of eight microstrip patches modified with Sierpinski fractal curves has been presented andexperimentally validated in this paper. Method proposed has enabled the achievement of considerable miniaturization of array length (26%),together with multi-band behavior of the antenna, which proves the attractiveness of presented design methodology and its ability to be implemented in more complex...
-
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublicationUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Small Antenna Design Using Surrogate-Based Optimization
PublicationIn this work, design of small antennas using efficient numerical optimization is investigated. We exploit variable-fidelity electromagnetic (EM) simulations and the adaptively adjusted design specifications (AADS) technique. Combination of these methods allows us to simultaneously adjust multiple geometry parameters of the antenna structure of interest in a computationally feasible manner, leading to substantial reduction of the...
-
Novel structure and design of compact UWB slot antenna
PublicationIn this paper, a novel structure of a compact UWB slot antenna is presented along with a simulation-driven design optimization algorithm for adjusting geometry parameters of the device. Our primary objective is to obtain small footprint of the structure while maintaining its acceptable electrical performance. It is achieved by introducing sufficiently large number of geometry degrees of freedom, including increased number of parameterized...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublicationA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Kriging metamodels and design re‐utilization for fast parameter tuning of antenna structures
PublicationThe paper addresses the problem of computationally efficient electromagnetic (EM)‐driven design closure of antenna structures. The foundations of the presented approach are fast kriging interpolation metamodels, utilized for two purposes: (a) producing a good starting point for further parameter tuning, and (b) yielding a reasonable Jacobian matrix estimate to jump‐start the optimization procedure. The models are rendered using...
-
Dual-band antenna with improved gain for WLAN and ISM applications
PublicationIn this Letter, a dual-band antenna with an improved gain is proposed. The structure features 9.7 and 10.4 dBi gain within 2.4 GHz to 2.5 GHz and 5 GHz to 6 GHz bands, respectively. This makes it suitable for WLAN and ISM applications. The structure comprises an asymmetrical pair of radiators and slots suspended over a reflector. The antenna is optimised in a two-stage process using a trust-region-based gradient search algorithm....
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Simple 2-D Direction-of-Arrival Estimation Using an ESPAR Antenna
PublicationIn this letter, it has been shown how an electronically steerable parasitic array radiator (ESPAR) antenna can be used for 2-D direction-of-arrival (DoA) estimation employing received signal strength (RSS) values only. The proposed approach relies on changes in RSS values recorded at the antenna output port observed for different vertical and horizontal directions, while antenna’s main beam sweeps 360° area around the ESPAR antenna. Based...
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
Millimeter Wave Negative Refractive Index Metamaterial Antenna Array
PublicationIn this paper, a novel negative refractive index metamaterial (NIM) is developed and characterized. The proposed metamaterial exhibits negative effective permittivity (εeffe) and negative effective permeability (µeffe) at millimeter wave frequency of 28GHz. This attractive feature is utilized to enhance the gain of a microstrip patch antenna (MPA). Two thin layers of 5 5 subwavelength unit cell array of NIM are placed above a...
-
Two-Row ESPAR Antenna with Simple Elevation and Azimuth Beam Switching
PublicationIn this letter, we propose a two-row electronically steerable parasitic array radiator (ESPAR) antenna designed for direction of arrival (DoA) estimation in Internet of Things (IoT) applications relying on simple microcontrollers. The antenna is capable of elevation and azimuth beam switching using a simple microcontroller-oriented steering circuit and provides 18 directional radiation patterns, which can be grouped in 3 distinctive...
-
Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics
PublicationIn this letter, a design of experiments technique that permits uniform sampling in constrained domains is proposed. The discussed method is applied to generate training data for construction of fast replacement models (surrogates) of antenna input characteristics. The modeling process is design-oriented with the surrogate domain spanned by a set of reference designs optimized with respect to the performance figures and/or operating...
-
Miniaturization of ESPAR Antenna Using Low-Cost 3D Printing Process
PublicationIn this paper, the miniaturized electronically steerable parasitic array radiator (ESPAR) antenna is presented. The size reduction was obtained by embedding its active and passive elements in polylactic acid (PLA) plastic material commonly used in low-cost 3D printing. The influence of 3D printing process imperfections on the ESPAR antenna design is investigated and a simple yet effective method to compensate them has been proposed....
-
A Broadband Circularly Polarized Wide-Slot Antenna with a Miniaturized Footprint
PublicationThis letter presents a novel and simple feeding technique for exciting orthogonal components in a wide-slot antenna. In this technique, a rectangular bracket-shape parasitic strip is placed at the open end of the straight microstrip line to excite the fundamental horizontal and vertical components of the circular polarization (CP). The proposed technique—when employed in conjunction with the asymmetrical geometry of coplanar waveguide...
-
Asymmetrical-Slot Antenna with Enhanced Gain for Dual-Band Applications
PublicationDual-band operation is an important feature of antennas to be applied in modern communication systems. Although high gain of radiators is rarely of concern in urban areas with densely located broadcasting stations, it becomes crucial for systems operating in more remote environments. In this work, a dual-band antenna with enhanced bandwidth is proposed. The structure consists of a driven element in the form of an asymmetrical radiator/slot...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublicationElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...
-
Knowledge-based performance-driven modeling of antenna structures
PublicationThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
ESPAR Antenna-Based WSN Node With DoA Estimation Capability
PublicationIn this paper, we present a low-cost energy-efficient electronically steerable parasitic array radiator (ESPAR) antenna-based wireless sensor network (WSN) node designed for IEEE 802.15.4 standard that is capable of performing direction of arrival (DoA) estimation in real-life outdoor environments. To this end, we propose the WSN node architecture, design and realization that utilizes NXP JN5168 radio frequency (RF) wireless transceiver...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublicationA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Ultra-Compact Self-Quadruplexing Microfluidically Frequency Reconfigurable Slot Antenna Using Half-Mode SIW
PublicationIn this brief, the design of an ultra-compact self-quadruplexing frequency reconfigurable antenna (SQFRA) utilizing a half-mode substrate-integrated waveguide (HMSIW) and microfluidic channels is discussed. Four HMSIW cavities fed by four microstrip lines and slots are used to construct a highly compact antenna. The microstrip feedings to the HMSIW cavities are applied in such a way that the proposed antenna exhibits self-quadruplexing...
-
A Dual-Polarized 39 GHz 4x4 Microstrip Antenna Array for 5G MU-MIMO Airflight Cabin Connectivity
PublicationThis paper presents the design, fabrication, and experimental validation of a 39 GHz dual-polarized 4x4 microstrip antenna array. The array consists of 16 slot coupled circular microstrip patches, fed through SMPS connectors. The procedure requiring a reduced number of cables for measurement of the uniformly excited antenna array is also presented. The array exhibits 18 dBi peak gain and 2.9 GHz reflection bandwidth and is intended...
-
A Compact Circularly Polarized Antenna With Directional Pattern for Wearable Off-Body Communications
PublicationThis letter presents a geometrically simple and compact circularly polarized (CP) antenna with unidirectional radiation characteristics for off-body communications. The proposed antenna is based on a microstrip line monopole extension from a coplanar waveguide (CPW) and a protruded stub from one side of the coplanar ground plane along the length of the monopole. The orthogonal components of equal amplitudes required for circular...
-
D-Band High Gain Planer Slot Array Antenna using Gap Waveguide Technology
PublicationA D-band high gain slot array antenna with corporate-fed distribution network based on gap waveguide structures is proposed at 140GHz. To overcome the fabrication challenges at such high frequency, the gap waveguide technology is deployed in which good electrical contact between different parts of the waveguide structure is not required. The proposed sub-array has four radiating slots that are excited by a groove gap cavity and...
-
Highly-Miniaturized Microfluidically-Based Frequency Reconfigurable Antenna Diplexer Employing Half-Mode SIRW
PublicationThis article introduces a super-miniaturized frequency reconfigurable antenna diplexer based on microfluidic techniques. The proposed structure is developed using a half-mode substrate-integrated rectangular waveguide (HMSIRW). The antenna architecture consists of two HMSIRW cavities loaded with L-shaped slots, which are excited by two microstrip feedlines to realize two distinct radiating frequency bands. The footprint of the...
-
Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications
PublicationIn this paper, we have introduced a low-profile electronically steerable parasitic array radiator (ESPAR) antenna that can successfully be used to estimate the direction-of-arrival (DoA) of incoming signals in wireless sensor network (WSN) applications, in which the height of the complete antenna has to be low. The proposed antenna is over three times lower than high-profile ESPAR antenna designs currently available in the literature...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Shape Memory Alloy-Based Fluidically Reconfigurable Metasurfaced Beam Steering Antenna
PublicationA low-cost actuator-based fluidically programmable metasurface (FPMS) antenna is proposed to solve the slow tuning speed problem of the manually fluidic based reconfigurable antennas. The FPMS-based antenna is probe-fed and comprises a 4 × 4 square ring metasurface as a superstrate. Moreover, two shape memory alloy (SMA)-based electrically-controlled actuators are employed in the design for controlling the position of the 3D-printed...
-
UHF ESPAR antenna for simple Angle of Arrival estimation in UHF RFID applications
PublicationAn electronically switched beam antenna for localization of passive UHF RFID tags based on a simple Angle of Arrival (AoA) technique is proposed‥ Detailed antenna design and realization are presented together with corresponding simulations and measurement results. Experimental tests with passive UHF RFID tag show the validity of theoretical assumptions for application of the antenna in UHF RFID based localization systems.
-
Miniaturized uniplanar triple-band slot dipole antenna with folded radiator
PublicationA miniaturized uniplanar slot dipole for triple-frequency operation is presented. The antenna consists of a folded slot radiator with an increased number of degrees of freedom that allow for efficient size reduction. Rigorous electromagnetic (EM)-driven design optimization is applied in order to achieve the smallest possible size while maintaining acceptable levels of antenna reflection at the required operating frequencies. The...
-
Simulation-Driven Design of Microstrip Antenna Subarrays
PublicationA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (e.g., a corporate network) on the subarray side lobe level and allows adjusting both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces designs...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna
PublicationIn this paper, we present a novel, low-cost approach to indoor localization that is capable of performing localization processes in real indoor environments and does not require calibration or recalibration procedures. To this end, we propose a single-anchor architecture and design based on an electronically steerable parasitic array radiator (ESPAR) antenna and Nordic Semiconductor nRF52840 utilizing Bluetooth Low Energy (BLE)...
-
Direction-of-Arrival Estimation Using an ESPAR Antenna with Simplified Beam Steering
PublicationIn this paper, it has been shown, how electronically steerable parasitic array radiator (ESPAR) antenna, in which beam steering is done in a simple way, can be used for directionof- arrival (DoA) estimation of an unknown signal impinging the antenna. The concept is based on an ESPAR antenna having twelve parasitic elements, in which beam switching is realized by RF switches providing required loads to its parasitic elements. Numerical...
-
Enhancing Performance of Switched Parasitic Antenna for Localization in Wireless Sensor Networks
PublicationThis paper presents an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). The limitations of the existing design approach are illustrated, as well as perspectives and challenges of the proposed solution in relation to the localization in...
-
Objective relaxation algorithm for reliable simulation-driven size reduction of antenna structure
PublicationThis letter investigates reliable size reduction of antennas through electromagnetic-driven optimization. It is demonstrated that conventional formulation of the design task by direct footprint miniaturization with imposing constraints on electrical performance parameters may not lead to optimum results. The reason is that—in a typical antenna structure—only a few geometry parameters explicitly determine the antenna footprint,...